Department of Defense

High Level Architecture
Run-Time Infrastructure
Programmer’s Guide

Version 1.0

15 May 1997

.. - - — = =
A e — | —
A AN E ===
.. 7 AW | e .
N — M | I R E — 7 = » | — Virtual Technalogy Corparation
AV = o
An Employee-Owned Company Software and Systems Engineering Professionals

RTI 1.0 Programmer’s Guide

TABLE OF CONTENTS

L. OV E RV I EW i e e e e e e e 6
1.1 HIGH LEVEL ARCHITECTUREttt eet et aet ettt et et e et e e e e et e e e et e e e et e e ea e e s enateeaenetaenennen 6
1.2 CONCEPTUAL MODEL OF THE MISSION SPACE ...ttt et e e et e e e e e e e e e et e e e e teee et enannen 7
1.3 DATA STANDARDIZATION ..t ututtttet ettt et e et eaet e e e e e e aa e eaaa e et eaeaet e e eaet e aasaaeneneeneneaaenanaens 7
2. RTI 1.0 SYSTEM ARCHITECTURE ..ottt i 8
2.1 RUN TIME INFRASTRUCTURE (RTI) EXECUTIVE.....cituiiiieeitieeit et e e e e e eee et e et e et e e e eaneeeanns 8
2.2 FEDERATION EXECUTIVE ..ttt ittt et e e e e e et e et e e e et e e e et e e e et e e a e e e neaaenees 9
2.3 CH4 LIBRARY (LIBRT) . itiiiiiiiee ittt et e et e e e e e e e e e e e et e e et aeeaa e e eanees 10
2.3.1 C++ Application Programming INterface (AP1).......ccoooiiiiiiiiiieeeeeee e 10
2.3.2 Memory Allocation CONVENLIONS............iiiiiiiiii e e et e e e e e e e e e eaaees 10
2.3.3 Data MarShaling......ccoiiii e e e e e e e e e e e e e e aan 11
2.3.4 Internal SOftWAr € DESIGN. iiiiiiiii et e e e e e e e e e e e et e e e e e eata e eeeeaneen 11
2.4 CONFIGURATION AND INPUT FILES. ... tttiitiieie e e et e et e et e e et e e et e e et e e e e e e eneeaanas 13
2.4.1 Run-time Initialization Data (RID)..........ccouuuiiiiiiiii e e e 13
2.4.2 Federation Execution Data (FED)..........c.uuuuiuuiiiiiiiiiiiie e e ee e e e e e e e e e e e e s 15
3. HLA SERVICE TO CH++ MAPPING ..ottt 25
3.1 FEDERATION MANAGEMEN T ...ttt ittt e et e et e e e e et et e e e et e e e et e e e a et e e eaete e aneteenaneaaenennen 25
3.1.1 Create Federation EXECULION.cooiiiuiiiieieiiie et e e e e et e e e e e eaaas 26
3.1.2 Destroy Federation EXECULION.ccciiiiiieiiiiis e ee e e e e e et e e e e e e e e e e rar e as 28
3.1.3.J0IN FEAEration EXECULION.uuiiiiiiiieeeiiie e et e e e e et e e e e e et e e e et e e e e eba e eeeeas 30
3.1.4 Resign Federation EXECULION...........uiii i e e e e e 33
315 REQUESE PAUSE. ... ti ittt ettt e e e e et e e e e et n e e e e 36
BLL.B INITIALE PAUSE F ..ovuiiiiiii ettt ettt e et e e e e e et e et e et e e et e e e e e et eerbeees 38
317 PAUSE ACNIEVEA.oe ittt ettt e e e e e e e e e e e e e e e e et eees 40
3.1.8 REQUESE RESUIME. ...ttt e et e e e e it r e e e et a e e et e e e neaeens 42
31O INITIAtE RESUME F ..euiiiiieii ettt ettt e et et e e e e et e et e s e e et e e e b e e et e e st eeanens 44
3.1.10 RESUME ACNIEVEA.un ittt e e e e e e e abeaes 45
3.1.11 ReqUESE FEAEIatioN SAVE.......ccceeuiiiiei et e e e e e e e e et e e e e e e earraan s 47
3112 INItiate FEABIALE SAVE F ...covuiiiiiiii ettt e e e e e e e et e e e et e e e aaeeeeean 49
3.1 13 Federate SAVe BEOUN.........uii e 51
3.1.14 Federate SAVE ACNIEVE...........i ittt e e e e et eeaan 53
3115 REQUESE RESION ... ittt et e e et e et e et e et e e e e e e e 55
T K F LR - (ol R LS o (I TSNP 57
3,117 RESEOrE ACNIEVEQ.iiiii et e e e et a e e b eaes 59
3.2 DECLARATION MANAGEMENT .. ettt et ete et ee et et et e e et et e e et et e e et et e e et et eet e eaeteaaenaaeanenanaensn 61
3.2.1 PUDLiSh OBJECE ClaSS......uuiiiiiii it e e e e et e e e e e e e e aaan s 62
3.2.2 PUBIiSh INEEracCtion Class..........uueiiiiiiiiiiiie ettt e e e e e e e et eeeean 65
3.2.3 Subscribe Object Class AttribULE............oii i e 67
3.2.4 SUDSCIIDE INTEIraCtiON ClaSS......ccvviiieiiiiee ettt e e et e e e et e e e aaa e eeaas 71
3. 2.5 CONrol UPAAES F..uuuiiiiiiiiie ettt e e e e e e e e e e e et e e e e et e e e e e a bt e e e e eanan s 74
3.2.6 CONrol INEErACTIONS T ..ovvuiiiiieeeiie et e e e e et e et e e et e e e st e e e e s e e e et eeeees 76
3.3 OBIECT M ANAGEMENT .t tttit ettt e et e e e e e et e e e e e e e e e e e et e et ea et e e ea et e e ea et e enenetaeneneaaenennen 78
TR Tt I <o 1T A 1 0 79
IR T = L= To 1) (= G o =T 81
3.3.3 Update AttriDULE ValUES.........coveiieiiii e e e e e e araan s 83
I I B TS oo Y= G @ o= e P 86
3.3.5 REflECt ALIriDULE VAIUEBS F ... i e e e 88
R SIS =l aTo I N a1 = = Tox £ o] PRSPPI 90
3.3.7 RECAIVE INLEIACTION .. iiiiiiiii et e e e e e et e e e e e et e e et e eeesaeeees 92

RTI 1.0 Programmer’s Guide

RS D L= (= @ o] =T N 94
IR e N 1010}V @] o =Tod PN 96
3.3.10 Change Attribute Transportation TYPE......ccceiieiiiieeii e e e e s 99
3.3.11 Change Attribute Order TYPE......ccoiiiieeiiiieiie s e e e e e e e e e e e e e e aaeees 102
3.3.12 Change Interaction Transportation TYPE..........coccccuriiriierieeeee e e e e seesiirrrrrre e e e e e e e e s sssnanennes 105
3.3.13 Change INteraction OFAer TYPE.....ccceieeiiieeiee ettt 107
3.3.14 Request Attribute Value UPALe...........uuuuueiiiiiiiiiieee e a e e e 109
3.3.15 Provide Attribute Valug UPdate +.........uuvviiiiiiiiiiiiiiis s s e s e na e e e e e e e aaaaaaaaaaa s 112
G TR Tt K B = = xS PP 114
3.3.17 ReflECt RELFACHION ..o e e e e e e e e e e e e e e e e e 116
3.4 OWNERSHIP MANAGEMENT ... tettttettette et et e et e et e et e et e e e s e e e e e et n e et e e en e e en e e e reenneenneenneenns 118
3.4.1 Request Attribute Ownership DIVESLITUre..........ccooeeieiiiie 119
3.4.2 Request Attribute Ownership ASSUMPLION +.....uuueiiiiii e 123
3.4.3 Attribute Ownership Divestiture Notification +...........cccceoeeei i 126
3.4.4 Attribute Ownership Acquisition Notification +..........cccccviiiviiiiiiieieeee e 128
3.4.5 Request Attribute Ownership ACQUISITION..........cccoiiiiiiiiiieeee e 130
3.4.6 Request Attribute OWNErship REIEASE +.......uuuiiiiiiiiiiiiiiiiiiiieeeeee e e e e e e ereaeeeees 133
3.4.7 QuEry AttribULE OWNEI SNIP....cuiiiii i e e e e e e e e e e eee s 135
.5 TIME MANAGEMENT .ttt ettt et ettt et et et e ee e et e et e et e et e eer e e et e e et e et r e et e e en e e en e e enreenneennennneenns 138
3.5.1 ReQUESE FEAEIAtioN TiME. iiiieiiiiii i e e eeee e e e e et e e e e et e e e e e e e e r e e e e e eaarna e aeees 139
3.5.2 REOUESE LBT S . ittt e ettt e e et e et b e e e e e e ettt a e e e e eeanan s 140
3.5.3 REQUESE FEAEIAtE TIME....iieiiiii e eeeeeie et e e e e e e e e e e e e e et e e e e e e aaaa e aee s 142
3.5.4 Request Minimum NexXt EVENE TiMe.......cccuuuiiiieiiiiie e et e e e e e 144
3.5.5 St LOOKANEAA.cciiiiiieiiiiii e s 146
3.5.6 RequESt LOOKANEAM...........ccuuiiiiiiiie e 148
3.5.7 Time AAVANCE REQUESL........ciiiiiii e e e e e e s e e e e e e e e e et e e e e eaaaa s 149
3.5.8 NEXE EVENE REQUESE......cuiite ittt ettt e e et e e et e e e e ans 152
3.5.9 FIUSh QUEUE REOUESL.......uvuieeieiiiii e e et e et e e e e et e e e e et s e e e e e st e e e e e aaaa s 154
3.5.10 Time AGVANCE GFaNT F ..eeeiviiiiiiiiiiiiiiiaaaee s e e e e e e e e e e e et e e e e e eeeeaeeabbbrae e e e e e e e e aaeaaaaeaaaees 156
3.6 DATA DISTRIBUTION MANAGEMENT ... ctuttiitiieuete et e e e e eei e eea s e e r e st e e s e e s e e e en e ennennaeenns 158
3.7 RT] SUPPORT SERVICES ... ttuettiettetteeteete e e et e et e et e et et e ea e ea e et e et e en e ea e enreenreen e et eeneenns 159
3.7.1 Get Handle and Get NAME SEIVICES.uiiieeeiiiiiiiiiiiiie e e e et e e e e e e e e et e e e e e e e e e seeebeees 160
A = B Tl =T [I o 165
3.7.3 St TIME CONSLIAINEU.....ceeiiiiiiiiee ettt e e e e e e e e e ea et eeeeeas 167
R A I o3 PP 169
3.7.5 dequeueF I FOaSyNChrONOUSY...........uuuiiiiiiiiiii e 171
4. PROGRAMMING WITH THE RT .t 172
AL HELLO WORLD ...ttt ettt ettt ettt ettt et et et e et et e et e e et e et e et e e et e e en e e enn e e neennenns 172
4.1.1 Simulation Object MOdel (SOM).....uuiii i e 172
4.1.2 Federation Object Model (FOM)........oooiiiiiiiiiiiie st a e e e e e e 173
4.1.3 Federation EXecution Data (FED)...........uuuuuuuiiuiiiiiiiiiiiiiiiniiieeienernnenneeennennnnrnnennn—.. 173
4.1.4 RUNNING the APPIICALION.......uii e e 174
4.1.5 Stepping Through the APPliCatION..........cciiiiiiiiii e e 175
4.2 JAGER: ANOTHER GAME EXPLOITING THERTI (JAGER)......cvviiiiiiiieii e, 192
5. TROUBLESHOOTING ..ottt enees 193

RTI 1.0 Programmer’s Guide

TABLE OF TABLES

TABLE 2-1: RTI EXECUTIVE CONSOLE COMMANDSuiuitiitet et et eeieteteeet et eaeteaaeneaesaenaneenenanaanenanns 8
TABLE 2-2: FEDERATION EXECUTIVE CONSOLE COMMANDSuittiiitetieet et ieneteeieneteeaeneaeeneneneeenenens 9
TABLE 2-3: MANAGER::FEDERATE ATTRIBUTE DEFINITIONS. .. cuiuitiiietet e et eeeet e e et eeeneaeaeanenenees 16
TABLE 2-4: MANAGER::FEDERATION ATTRIBUTE DEFINITIONS. .. .uuuiiitiiiiiicei e ee e e eee e e eneaeaee 18
TABLE 2-5: MANAGER::FEDERATE::ALERT PARAMETER DEFINITIONS. .. cuttitiiititeieeee e ieeeneaeeenannas 18
TABLE 2-6: MANAGER::FEDERATE::SERVICELOG PARAMETER DEFINITIONS......ociiitiiiiieieeeieeeneenes 18
TABLE 2-7: MANAGER::FEDERATE::SERVICELOG::SERVICELOGARGUMENTS PARAMETER DEFINITIONS .19
TABLE 2-8: MANAGER::FEDERATE::OBJECTINFORMATION PARAMETER DEFINITIONS.......ccveiveninennnnne. 19
TABLE 2-9: MANAGER::FEDERATE::PUBLISHINGCLASSPARAMETER DEFINITIONSccvuiviniiiiieeeieanenes 20
TABLE 2-10: MANAGER::FEDERATE::SUBSCRIBINGCLASSPARAMETER DEFINITIONSccovviiienceinnnns 20
TABLE 2-11: MANAGER::FEDERATE:ACTION PARAMETER DEFINITIONS ... cuiiiitiiiiieieeeeieeeaeeeeaeaaanas 20

TABLE 2-12: MANAGER::FEDERATE::ACTION::REQUESTPUBLICATIONTREE PARAMETER DEFINITIONS...20
TABLE 2-13: MANAGER::FEDERATE::ACTION::REQUESTSUBSCRIPTIONTREE PARAMETER DEFINITIONS..21

TABLE 2-14: MANAGER::FEDERATE:SETTIMING PARAMETER DEFINITIONSviiiiiitiiiieeieieeeeeeeaaae 21
TABLE 2-15: MANAGER::FEDERATE::ACTION::REQUESTOBJECTINFORMATION PARAMETER DEFINITIONS 21
TABLE 2-16: MANAGER::FEDERATE::ACTION::M ODIFY ATTRIBUTESTATE PARAMETER DEFINITIONS...... 22
TABLE 2-17:
MANAGER::FEDERATE::ACTION::REMOTESERVICEINVOCATION::DORESIGNFEDERATIONEXECUTION
PARAMETER DEFINITION S ..t titttt ettt et e et e e e e e et e e e et e e e et e e e et e e e et e e e et e eaetaenaneaaenas 22
TABLE 2-18: MANAGER::FEDERATE::ACTION::REMOTESERVICEINVOCATION::DODELETEOBJECT
PARAMETER DEFINITION S ..t titttt ettt et e et e e e e e et e e e et e e e et e e e et e e e et e e e et e eaetaenaneaaenas 22
TABLE 2-19: MANAGER::FEDERATE::ACTION::REMOTESERVICEINVOCATION::DOSETLOOKAHEAD
PARAMETER DEFINITION S ..t titttt ettt et e et e e e e e et e e e et e e e et e e e et e e e et e e e et e eaetaenaneaaenas 23
TABLE 2-20: MANAGER::FEDERATE::ACTION::REMOTESERVICEINVOCATION::DOSETTIMECONSTRAINED
PARAMETER DEFINITION S ..t titttt ettt et e et e e e e e et e e e et e e e et e e e et e e e et e e e et e eaetaenaneaaenas 23
TABLE 2-21: MANAGER::FEDERATE::ACTION::REMOTESERVICEINVOCATION::DOTURNREGULATIONON
PARAMETER DEFINITION S ..t titttt ettt et e et e e e e e et e e e et e e e et e e e et e e e et e e e et e eaetaenaneaaenas 23
TABLE 2-22: MANAGER::FEDERATE::ACTION::REMOTESERVICEINVOCATION::DOTURNREGULATIONOFF
PARAMETER DEFINITION S ..t titttt ettt et e et e e e e e et e e e et e e e et e e e et e e e et e e e et e eaetaenaneaaenas 24
TABLE 3-23: FEDERATION MANAGEMENT SERVICES. ... ucutiuttititiieteteeieteteeaeteteeaeneneaaenaneaaeneneaaenenes 25
TABLE 3-24: DECLARATION MANAGEMENT SERVICES.....tuiuiuitititeteteeeneteeaeneteeseneneaaeneneaeenenetaenenes 61
TABLE 3-25: OBJIECT MANAGEMENT SERVICES ... utuiuitiitetieet et etaetet e e aeneteaaeneteaaeneneaaenaneaaeneneaaenennes 78
TABLE 3-26: OWNERSHIP MANAGEMENT SERVICESiutuititteiieteeet et etaeteaaeteeeaeeneaienetaeneanenaanennen 118
TABLE 3-27: TIME MANAGEMENT SERVICES .. .uuiuititititet e aet e et et e e eaet e e e teee e ene e s ene e eneanenaaennen 138
TABLE 3-28: DATA DISTRIBUTION MANAGEMENT SERVICES.....uuiuititiiiteieteeieaieneaneaeeneteeneaneneanennes 158
TABLE 3-29: RTI SUPPORT SERVICES. ...\ utuituttetttttetetaet et e eaeaeeeteeaeteeea s eae e enetaeneaeneaaenaanenaenenen 159
TABLE 4-4-1: HLA SERVICESUSED IN HELLO WORLD......cuiiitiii et ee e e aaea e 172
TABLE 4-4-2: HELLO WORLD OBJECT CLASSSTRUCTURE ... tuttitiititetiieteeteteeteaaeneaeaeeneteenaaaenaanennes 172
TABLE 4-4-3: HELLO WORLD OBJECT INTERACTION TABLE ...utuitiiiiiei e eee e e e e e eee e ee e eeaneeaenen 173
TABLE 4-4-4; HELLO WORLD ATTRIBUTE/PARAMETER TABLE ...ucvvniitieiieiteiieeeeeee e et ee et eeaaeeanns 173

RTI 1.0 Programmer’s Guide

TABLE OF FIGURES

FIGURE 2-1: RTI 1.0 SYSTEM ARCHITECTUREtuttittitt et ieteeee et eeteeeae e eaea e e e eneaeeeneseeaneanenanaensn 8
FIGURE 2-2: RELIABLE UPDATE ATTRIBUTE VALUE & SEND INTERACTION COMMUNICATION................ 9
FIGURE 2-3: RTI 1.0 CH INTERFACE.ttt et e et et e e ettt e et et e e et e e e e e e e e aaenas 10
FIGURE 2-4: RTI| 1.0 INTERNAL ARCHITECTURE. .. .utuittitttttttateteeet et eeeaeteeaenete e enateaaeneneeaenenaaaensn 12
FIGURE 2-5: FEDERATE EVENT LOOP EXAMPLEcuititiiii ettt et e e e e te e e e e e e ee e aaenas 13
FIGURE 2-6: EXAMPLE RTI.RID FILE ..uiuittiiiitiieie et e et e e e e e et e e e e et e e et e e e e e e e e aeaaenaneaenas 15
FIGURE 2-7: FEDERATION EXECUTION DATA (FED) FILE SYNTAX ..ivtuiiiiieiieeiieeeiieeieesineeaneesaneesnaeeens 16
FIGURE 4-8: HELLO WORLD FEDERATION EXECUTION DATA (FED).....ccivviiiiiiiiecie e 174
FIGURE 4-9: HELLO WORLD: SAMPLE OUTPUT OF THE APPLICATION .. .uttuiuititeaeteeeaeeneaieneaneneenanaenns 174
FIGURE 4-10: HELLOWORLD: INITIALIZING THE RTI OBIECTS.....uiuiiiieii e eeas 175
FIGURE 4-11: HELLOWORLD: CREATING THE FEDERATION EXECUTION.....cuiiiiiiiiiiiieieeeeeeeeieenes 177
FIGURE 4-12: HELLOWORLD: JOINING A FEDERATION EXECUTION ... cuitiiiiiiit e eeeeeeeeeeeeneeeeaaenns 178
FIGURE 4-13: HELLOWORLD: SETTING TIME MANAGEMENT ..euitiitiiiiei e eiie e ee e e eeea e eeaeeneaaenes 178
FIGURE 4-14: HELLOWORLD: RUN-TIME TYPE IDENTIFICATION EXAMPLE.......c.iiiiviiiieiiieeeeieieenes 179
FIGURE 4-15: HELLOWORLD: PUBLICATION AND SUBSCRIPTION EXAMPLEciiiiviiiiie e 180
FIGURE 4-16: HELLOWORLD: INSTANTIATION OF HLA OBJIECTS....uitiiiii i ne e aenes 180
FIGURE 4-17: HELLOWORLD: TIME ADVANCE REQUEST EXAMPLE. .. .uiuitititiiii i iiiiiiieeeteeieneeeaeaeans 181
FIGURE 4-18: HELLOWORLD: PROVIDING CONTROL TOTHERT .. i 182
FIGURE 4-19: HELLOWORLD: CONTROL UPDATES EXAMPLEctiiiiiiiiii e ee e aeaas 184
FIGURE 4-20: HELLOWORLD: CONTROL INTERACTIONS EXAMPLE......citiiiiii e eeaes 185
FIGURE 4-21: HELLOWORLD: DISCOVERING AN HLA OBJECT ...viiiiiii e eeas 185
FIGURE 4-22: HELLOWORLD: RECEIVING OBJECT ATTRIBUTE UPDATES. ... cuiiitiieiieeiiieteeeineneaneienns 187
FIGURE 4-23: HELLOWORLD: RECEIVING INTERACTIONSuuitiiitiieteeeaeeee e e eaeeteae e eneaeeneaaeneaenns 188
FIGURE 4-24: HELLOWORLD: REMOVING HLA OBJIECTS. ...ttt e e et e e eeaaeaes 189
FIGURE 4-25: HELLOWORLD: RECEIVING A TIME ADVANCE GRANTitiiiiiteiiee e eeeaieeaneneeeaaenns 190
FIGURE 4-26: HELLOWORLD: UPDATING COUNTRY OBJECTS AND SENDING ATTRIBUTES AND

LN 1= 2N 1T N Rt 192

RTI 1.0 Programmer’s Guide

1. Overview

This document is designed to aid developers of distributed models, simulations, analysis tools, and other
applications to gain a better understanding of the High Level Architecture (HLA) and the Run-Time
Infrastructure (RTI). This document is not intended to describe the concepts of modeling and simulation or
the HLA, but to provide a starting point for an experienced simulation developer to use the RTI. To best
understand the RTI and this programmer's guide, one should first have afamiliarity with the higher-level
components and issues that comprise the Department of Defense (DoD) Modeling and Simulation Master
Plan. This plan defines the objective of developing a Common Technical Framework for Modeling and
Simulation (M& S), consisting of three components for simulation development and interaction: the High
Level Architecture (HLA), Conceptual Model of the Mission Space (CMMS), and Data Standardization
(DS), all of which are briefly discussed below. More detailed information can be found at the Defense
Modeling and Simulation Office's (DM SO) home page at http://www.dmso.mil.

This section provides a brief overview and recap of the HLA, CMMS, and DS. Section 2 provides a
description of the system architecture for the 1.0 version of the RTI. Section 3 provides a description of the
1.0 C++ classes that implement the HLA 1.1 Interface Specification. Section 4 contains a programming
tutorial which demonstrates the use of the RTI services. Section 5 highlights some of the common
problems which may be encountered when configuring and using the RTI.

1.1 High Level Architecture

The HLA establishes acommon high-level simulation architecture to facilitate the interoperability of all
types of models and simulations among themselves and with C4l systems, as well as to facilitate the reuse
of M&S components.

HLA isdefined by the following three components:
HLA rules: These describe the responsibilities of federates and of the Run-Time Infrastructure (RTI) in
HLA federations. For example, federations must have a Federation Object Model (FOM) defined using
the Object Model Template format, which defines data exchanged by the RTI. Similarly, each federate
has an HLA Simulation Object Model (SOM), defining the attributes and objects the federate updates,
reflects, sends, receives, and transfers ownership.
Interface specification: This defines the six service groups between the RTI and the federates. These
service groups are: (1) Federation management: the creation, dynamic control, modification, and
deletion of afederation execution; (2) Declaration management: the intent to publish and subscribe to
object attributes and interactions; (3) Object management: the creation and deletion of object instances
and the communication of attributes and interactions; (4) Ownership management: the transfer of
ownership of object attributes.; (5) Time management: the coordination of advances in simulation
time; and (6) Data distribution management: the support of efficient data routing.
Object Model Template: Thisis the common method for representing HLA Object Model information,
for example, information found in the Federation Object Model (FOM) and Simulation Object Model
(SOM).

Run-Time Infrastructure

The RTI is a set of software components that implement the services specified by the HLA Interface

Specification. The RTI isthe general purpose software that provides the common interface services for the

execution of an HLA federation. The RTI provides these services to federates in away that is analogous to
how a distributed operating system provides services to applications.

For more detaled information about HLA, please access documentation available at
http://www.dmso.mil/projectsghla.

RTI 1.0 Programmer’s Guide

1.2 Conceptual Model of the Mission Space

A Conceptual Model of the Mission Space (CMMS) is afirst abstraction of the real world, which serves as
a common framework for knowledge acquisition with validated, relevant actions and interactions organized
by specific task and entity/organization. It isasimulation independent hierarchical description of actions
and interactions among the various entities associated with a particular mission area.

Thus, conceptual models of the mission space provide simulation developers with a common baseline for
constructing consistent and authoritative M& S representations. The primary purpose of CMMSisto
facilitate interoperability and reuse of simulation components, particularly among DoD simulation
developments, by sharing common, authoritative information between DoD simulations. CMMS will
provide a meta-model of fundamental knowledge about military operations. The CMMS System will
capture and store this knowledge, and make it easily accessible to simulation developers and users.

The mission space structure, tools and resources will provide both an overarching framework and accessto
the necessary data and detail to permit development of consistent, interoperable, and authoritative
representations of the environment, systems, and human behavior in DoD simulation systems.

For more detaled information about CMMS, please access documentation available at
http://www.dmso.mil/projects’cmms.

1.3 Data Standardization

The data standardization program seeks to facilitate reuse, interoperability, and data sharing among models,
simulations, and C4l systems by establishing policies, procedures, and methodologies for data requirements,
standards, sources, security, and verification, validation, and certification.

The primary products of the data standardization program are: (1) Common Semantics and Syntax (CSS),
which define common lexicons, dictionaries, taxonomies, and tools for data elements, and (2) Data
Interchange Formats (DIF), the physical structures (BNF, SQL) used by programmers to actualy
interchange data.

Other supporting data standardization products are: (1) Authoritative Data Sources (ADS), the primary
means for identifying data for reuse; (2) Data Quality (DQ) practices, abody of VV&A/C guidelines; and (3)
Data Security (DS) practices, the policies pertaining to data protection and release.

For more detailled information about data standardization, please access documentation available at
http://www.dmso.mil/projects/ds.

RTI 1.0 Programmer’s Guide

2. RTI 1.0 System Architecture

RTI 1.0 isadistributed system comprised of two global processes, the RTI Executive (rtiexec) and the
Federation Executive (fedex), and alibrary that is linked into each federate. The rtiexec is awell-known
process that manages the creation and destruction of federation executions. The fedex isaglobal process per
federation execution that manages the joining and resigning of federates in an execution. The linkable
library provides the federate devel oper with the interface and implementation of a majority of the HLA 1.1
services. The HLA 1.1 services are performed via communication between the rtiexec, the fedex, and the
federates utilizing socket-based reliable and best effort inter-process communication (IPC). See Figure 2-1:
RTI 1.0 System Architecture.

rtiexec fedex federate federate

|

I nter -Process Communication

Feder ate Software

RTI Software

Figure 2-1: RTI 1.0 System Architecture

2.1 Run Time Infrastructure (RTI) Executive

The RTI Executive (rtiexec) is the well-known global process that each federate will communicate with
during itsinitialization of the RTI components. The RTI Executive’s primary purpose is to manage the
creation and destruction of federation executions. The management of federation executions includes
ensuring that each federation execution has a unique name, providing a joining federate with the handle
(hostname and port) to an existing federation execution, and providing a unigue multicast group for each
federation execution to communicate best-effort data.

The rtiexec executable has a console interface that provides access to commands that can be used to help

manage the current list of federation executions. The set of commands currently available is described in
Table 2-1: RTI Executive Console Commands.

Table 2-1: RTI Executive Console Commands

Command Description

Usage

help Lists the available commands and their usage.

List Lists the set of federation executions that are currently registered with the
rtiexec .

ref <fedName> Returns the host and port for the specified federation execution.

remove <fedName> | Removes afederation execution from the rtiexec.

quit Exits the rtiexec process.

RTI 1.0 Programmer’s Guide

Note: The location of the rtiexec (host and port) is specified in the RTIl.rid file. Federateswill not be able
to communicate with the rtiexec process if the RTI_EXEC HOST and RTI_EXEC PORT values ae
incorrectly specified in the RTI.rid file. For more details on the RTI.rid file, see Section 2.4.1, Run-time
Initialization Data (RID).

2.2 Federation Executive

The Federation Executive (fedex) is aglobal process per federation execution that manages the joining and
resigning of federates and performs distribution of al reliable UpdateAttributeValues, Sendlnteractions, and
all RTI internal control messages. The fedex process is created (fork/execvp’d) by the first federate to
successfully invoke the Create Federation service for a given Federation Execution name. During
initialization, the fedex process communicates with the rtiexec to register itself and to request a multicast
address for its federations' best-effort communications. When a federate invokes the Join Federation
Execution service, the fedex provides the federate with an enumerated handle and a multicast address to use
for broadcasting best-effort communication. (Note: Only Update Attribute Value and Send Interaction
services can be communicated using best-effort transport.) For reliable Update Attribute Value and Send
Interaction services, the fedex acts as an information exploder by receiving the reliable communication from
the sending federate (point-to-point using TCP) and then iterating through all other federates sending the
reliable communication, asindicated in Figure 2-2: Reliable Update Attribute Value & Send Interaction
Communication.

Receiving
Federate

Sending / °
@ * fedex

o

\ ()
Receiving
Federate

Figure 2-2: Reliable Update Attribute Value & Send Interaction Communication

The fedex executable has a console interface that provides access to commands that can be used to help
manage the current list of federates. The set of commands currently available is described in Table 2-2:
Federation Executive Console Commands.

Table 2-2: Federation Executive Console Commands

Command Description

Usage

help Lists the available commands and their usage.

list Lists the set of federates that are currently joined to the federation execution.
ref <handle> Prints the hostname and port for the federate handle.

RTI 1.0 Programmer’s Guide

Table 2-2: Federation Executive Console Commands

Command Description

Usage

remove <handle> | Removes afederate from the federation execution.
trace Toggles trace mode on or off.

quit Exits the fedex process.

2.3 C++ Library (IibRTI)

The C++ library (libRTI) implements the interface to the HLA 1.1 services. Each federate in afederation
execution will utilize the C++ library to invoke HLA services. These services are peformed via
communication with the rtiexec, the fedex, and other federates in the federation execution. This section will
provide a high level description of the C++ Application Programming Interface (APl), memory
management conventions, and issues regarding data marshaling.

2.3.1 C++ Application Programming Interface (API)

The two classes that provide the interface between the federate and the RTI are the RTlambassador and
FederateAmbassador. The RTlambassador class defines and implements the interface that is used by the
federate to communicate with the RT1. The FederateAmbassador class defines the interface the RTI will use
to communicate with the federate. The FederateAmbassador classis an abstract base class that the federate
developer must implement (sub-class and define the methods) in order to successfully compile a federate
with the RTI. Figure 2-3: RTI 1.0 C++ Interface, depicts the two classes that provide the interface between

the federate and the RTI.

——

(<] Fedefanh]ecls
@ RTI Interfaces& Objects

Figure 2-3: RTI 1.0 C++ Interface

2.3.2 Memory Allocation Conventions

The general convention for memory allocation/deallocation is that the application developer must deall ocate
any memory that the developer allocated on the heap (using the new function). In addition, some RTI 1.0
class methods allocate memory on the heap and passit to the application. Each of the methods in the RTI
1.0 include files have been annotated with the conventions described in Table 2-3: Memory Allocation
Conventions, which follows.

Table 2-3: Memory Allocation Conventions

10

RTI 1.0 Programmer’s Guide

Code Convention Description Allocator Deallocator
Cl In parameter by value. None None
C2 Out parameter by reference. None None
C3 Function return by value. None None
C4 In parameter by const reference. Caller provides memory. Caler Caller

Caller may free memory or overwrite it upon completion
of the call. Callee must copy during the call anything it
wishes to save beyond completion of the call. Parameter
type must define const accessor methods.

C5 Out parameter by reference. Caller provides reference to Callee Caller
object. Callee constructs an instance on the heap (new) and
returns. The caller destroys the instance (delete) at its
leisure.

C6 Function return by reference. Callee constructs an instance Callee Caller
on the heap (new) and returns areference. The caller
destroys the instance (delete) at its leisure.

2.3.3 Data Marshaling

Communicating federation data across heterogeneous platforms (e.g., Sun, SGI, HP, IBM, Windows NT)
reguires a policy for the conversion of data between platforms. A commonly used policy isto convert data
between the platform specific data representations and a platform independent representation (usually called
network representation). This conversion requires knowledge about the data types to be converted. Since
the RTI 1.0 does not know the types of afederate’s attributes and parameters, it can not perform this
conversion.

2.3.4 Internal Software Design

RTI 1.0 provides a procedura interface to the HLA 1.1 services through the RTlambassador and
FederateAmbassador classes. Each of the servicesis executed by the federate within the federate’ s thread of
control. Figure 2-4: RTI 1.0 Internal Architecture depicts the high level objects within the RTI 1.0
system and annotates the objects with a description of their functionality.

11

RTI 1.0 Programmer’s Guide

publication/subscription enforcement
class promotion and parameter reduction

publication/subscription enforcement
ownership management and enforcement

builds the message, XDR
handles different transports
queues arriving messages if needed
advances local time

manages event retraction handles

= P
. Proxy Proxy
interfaceto ACE one per fed exec
TCP/IP exploder
single multicast

entry point entry point
for e_\ll federate ‘ for al RTI
services services
Bbiez Mo, Management
(oK A e action j ect Mgl Object
Mgr Model @ Y Tck]

class promotion and attribute reduction
object discovery and removal e

main event loop

-

Figure 2-4: RTI 1.0 Internal Architecture

2.3.4.1 Flow of Control

An application provides the flow of control to the RTI by using the RTIambassador::tick() method. During
the tick() method, the RTI performs many operations that are transparent to the application as well as the
operations which invoke FederateAmbassador methods (similar to application callbacks). An example

federate event loop is shown in Figure 2-5: Federate Event Loop Example.

while (RTI::RTI_TRUE) // My event |oop |lasts forever
{
try

{
ti meAdv@ ant = RTl:: RTl _FALSE;

rti Anb. ti meAdvanceRequest (currentTime + ti neStep);
/1 Shoul d catch exceptions here
while (!tineAdvG ant)
/1 Tick will turn control over to the RTI so that it can
I/ process an event. This may cause an invocation of one
/1 of the federateAnbassador Servi ces net hods.
// Be sure not to invoke the RTIanbassador Services fromthe

/1 federateAnbassador Servi ces; otherw se, a Concurrent Access
/1 exception will be thrown.

12

RTI 1.0 Programmer’s Guide

/1l tick inaloop to get all events currently queued up
while (eventsToProcess)

{

event sToProcess = rti Anb.tick();

/1 If atime advance grant occurred and we have been given
/1l permission to advance in tine then cal culate ny next state.

/1 Do some simulation stuff here and set ny newtine...
R
currentTime = grant Ti e;

Figure 2-5: Federate Event Loop Example

The RTI isadistributed system with components located throughout the federation. Each RTI component
(linked into each federate) must perform synchronization operations with the other RTI components to
allow a federation to progress in time, handle ownership management, join federations, and update
Management Object Model (MOM) state. It isimportant to invoke the tick method regularly (not just
when you want data) since many internal systems are invoked by RTlambassador::tick(). See Figure 2-4:
RTI 1.0 Internal Architecture for a depiction of internal RTI components that are provided flow of control
during a RTlambassador::tick().

2.3.4.2 Thread Model

The RTI 1.0 isintended to operate within a single thread (the main thread) of an application. However, the
RTI library has been compiled with the -mt flag and has been tested in applications that instantiate the RTI
objects in athread other than the main process thread. The RTI is not reentrant and enforces this by
throwing the exception RTI::ConcurrentAccessAttempted - this occurs when an RTlambassador method is
invoked while another RTlambassador method has not yet completed (this includes the tick() method).
However, the following RTI support services are reentrant and can be invoked within the scope of a
FederateAmbassador method: getObjectClassName, getObjectClassHandle, getAttributeName,
getAttributeHandle, getinteractionClassName, getlnteractionClassHandle, getParameterName, ad
getParameterHandle.

2.4 Configuration and Input Files

The RTI 1.0 requires that afederation execution data (FED) file and arun-time initialization data (RID) file
exist to run a federation execution. The FED file contains the data organization agreed upon in the FOM
along with default transport and ordering information for object attributes and interaction class data. The
RID file contains configuration parameters that the 1.0 uses to fine-tune and modify its system
configuration at run-time. 1.0 expectsto find the RID and FED filesin the directory specified by the
RTI_CONFIG environment variable. Thefiles are named RTI.rid and <Federation Name>.fed, respectively.

2.4.1 Run-time Initialization Data (RID)

The Runtime Initialization Data (RID) is RTI implementation specific information used to fine-tune RTI
behavior and system configuration at run-time. In 1.0, thisfile is parsed by the fedex and each federate
(libRTI). Anexample RTl.rid fileis shown in Figure 2-6: Example RTI.rid file.

13

RTI 1.0 Programmer’s Guide

HHHH S R R
FILE : RTl.rid

PURPCSE: This file is the main configuration file for the RII.

HH R R R R R R R R R R R R R R R R R R R

B R R H R
VAR ABLE: ATTRI BUTE_RELEASE TR ES

UNTS : Positive integer

PURPCSE : To specify the nunber of tines the RTI Anbassador should tick the
Federation Execution in an attenpt to release the attributes of a
resi gni ng federate.
B R R
ATTR BUTE_RELEASE TR ES 2

HHHHHH R R R R R R
VAR ABLE: AUTO Tl CK_PER CD

UNTS : Positive double

PURPCSE : To specify the autonatic tick period during join and resign.

HH B T R R R T R R
AUTO Tl OK_PER CD 1.0

BB R R R T R R R R T R R B R T R R
VAR ABLE: BEST_EFFCRT_PCRT

UNTS : Positive integer

PURPCSE : To specify the port number on which best-effort nulticast

addressing will be attenpted.

HHHHHH R R H R H R
BEST_EFFORT_PCRT 18134

B R H R
VAR ABLE: MAX HANDLE VALUE PAI RS

UNTS : Positive integer

PURPCSE : To specify the nmaxi mum nunber of attribute handl e value pairs

allowed in an attribute handl e val ue pair set.
B R R R H
MAX _HANDLE VALLE PAIRS 5000

HH T R T T P
VAR ABLE. MAX_CBJECTS PER FEDERATE

UNTS : Positive integer

PURPCSE : To specify the maxi num nunber of objects a federate may know about .
B R R R A R R R
MAX_CBIECTS_PER FEDERATE 100000

HHHHHH R R H R H R
VAR ABLE MOM TI ME_RESCLUTI ON

UNTS : Positive integer

PURPCSE : To specify the tick interval for checking the wall clock to see if
it istime to send a report.

HH T R T R P
MOM TI ME_RESCLUTI ON 10

W R R R R R
VAR ABLE: DELETED CBJECT DURATI ON

UNTS : Positive integer

PURPCSE : To specify the nunber of tick to wait before attenpting to

14

RTI 1.0 Programmer’s Guide

renove DELETED obj ects fromthe object database.
HH B T R T R
DELETED CBJECT_DURATION 10

BB R R R T R R R R T R R B R T R R
VAR ABLE: RTI _EXEC HOST

UNTS : Character string

PURPCSE : To specify the hostnane of the machine on which the RTI Executive
process i s executing.

HHHHHH R R H R H R
RTI _EXEC HCST | ocal host

B R R R B A R R R R
VAR ABLE: RTI _EXEC PORT

UNTS : Positive integer

PURPCSE : To specify the port nunber on which the RTI Executive process is

l'istening for connections.

T T T R T B S P PR R
RTI _EXEC PORT 18134

HH T R T T P
VAR ABLE Tl ME_TRACE

UNTS : Bool ean

PURPCSE : To specify whether or not to use tracing in the Ti ne Manager.
B R R R R B A R R R R
TI ME_TRACE CFF

HHHHHH R R H R H R
VAR ABLE: FEDEX_TI MEQUT

UNTES : Positive |nteger

Purpose : To specify how |l ong the FedEx should wait for input before handing
out orphaned objects to federates

HH T R T T P
FEDEX_TI MEQUT 120

Figure 2-6: Example RTI.rid file

2.4.2 Federation Execution Data (FED)

The federation execution data (FED) describes the information in the FOM that the RTI needs to properly
handle the global federation name space. The information contained in the FED describes the inheritance
structure of object and interaction classes, as well as the attributes and parameters at each level in the
respective class hierarchy.

When a federate joins a federation execution, components within the RTI library will read the
<FederationExecutionName>.fed file that is found in the directory specified by the RTI_CONFIG
environment variable. This file must contain each of the object and interaction classes and attributes and
parameters that will be used in afederation execution. The FED syntax is specified in a pseudo-lisp format
of nested lists of tokens. The FED file syntax is shown in Figure 2-7: Federation Execution Data (FED)
file syntax.

; Comments are any text after a semcolon.

; basic syntax exanpl e

; possible <transportation> = FED RELI ABLE,

v FED BEST EFFCORT

;; possi bl e <ordering> = FED RECEI VE,

15

RTI 1.0 Programmer’s Guide

- FED TI MESTAWP

(fed
;; object, class, and attribute definitions fol | ow

(obj ects
(class <nane>
(attribute <name> <transportation> <ordering>)
(attribute <name> <transportation> <ordering>)
s ... any other attributes nmust come before any subcl asses for sane |evel

(cl ass <nane>
(attribute <name> <transportation> <ordering>)
(attribute <name> <transportation> <ordering>)

)
;5 interactions, class, and parameter definitions follow

(interactions
(cl ass <nane> <transportation> <ordering>
(pararret er <narre>)
(par anet er <name>)
- ... any other parameters nust come before any subcl asses for the sane |evel

(class <nanme> <transportati on> <ordering>
(paranet er <nane>)
(paranet er <nane>)

)

)
) ; end of fed

Figure 2-7: Federation Execution Data (FED) file syntax

2.4.2.1 Management Object Model (MOM)

The Management Object Model (MOM) defines the set of object classes and interaction classes used for RTI
and federation specific management and monitoring. A thorough explanation of the HLA MOM including
Object Model Template descriptions is provided in “High Level Architecture Management Object Model”
located at the DM SO web-site.

RTI 1.0 implements the Manager::Federate object class which the RTI is responsible for publishing,
updating, and receiving reflected attribute values. This class provides the federation with information about
the federates identity, time settings, RTI version, and internal queue sizes. For a description of the attributes
implemented, see Table 2-3: Manager::Federate Attribute Definitions.

Table 2-3: Manager::Federate Attribute Definitions

Attribute Definition

FederateHost The string representation of the hostname the federate is executing on.

FederateHandle The string representation of an integer that is the handle assigned to the
federate by the fedex.

FederateState The string representation of the integer corresponding to the value of
the RTI:: FederateSateType enumeration appropriate for the federate.

16

RTI 1.0 Programmer’s Guide

Table 2-3: Manager::Federate Attribute Definitions

Attribute Definition

FederateName The string representation of the name specified by the federate at join
time - it is for descriptive purposes only.

RTlversion The string representation of the software version of the RTI library.
Theinitial 1.0 releaseisversion 1.0.1.

TimeManagerState The string representation of the integer corresponding to the value of
the RTI:: TimeManager SateType enumeration appropriate for the
federate. Thisvaueindicates what type of time-advancement service (if
any) is currently in effect for the federate.

Federatel_ookahead The string representation of a double that isthe value of the federate’s
lookahead.

FederateTime The string representation of a double that isthe value of the federate’s

local time.

TimeConstrained

The character representation of an integer that specifies whether the
federate is constrained or unconstrained, where O is Falseand 1 is True.

TimeRegulating The character representation of an integer that specifies whether the
federate is regulating or not regulating, whereQisFalseand 1is True.

FIFOlength The string representation of an integer that specifies the number of
elementsin the First In First Out (FIFO) queue. The FIFO queue
contains messages sent with RECEIVE order.

TSOlength The string representation of an integer that specifies the number of

elementsin the Time Stamp Ordered (TSO) queue. The TSO queue
contains messages sent with RECEIVE order.

Dequeuer FOasync

The string representation of the boolean value indicating whether or not
the federate is asynchronously processing receive-order messages. (See
the RTlambassador: : dequeuerI FOasynchronoudly service for further
description.)

Total ObjectCount

The string representation of an integer that specifies the total number of
objects known to the federate (either discovered or registered and is
reduced by delete and remove object services).

HoldingTokensObjectCount

The string representation of an integer that specifies the number of
objectsin afederates database but the federate is not aware of. This
occurs when someone resigns and rel eases ownership of tokens but no
one else assumed ownership. Thisis specific to the 1.0
implementation and may not be generally necessary.

DeletedObjectCount

The string representation of an integer that specifies the number of
objects the federate knows about that have been deleted. Thisis specific
to the 1.0 implementation and may not be generally necessary. It is
used to ensure that del eted objects are not rediscovered due to traffic
latencies. An object will remain in the database for the number of ticks
specified in the RID file. Thisvalue may need to be adjusted due to
federation specific run-time properties.

NumAttributes

The string representation of an integer that acts as an indicator of the
number of attribute values stored by the federate.

NumParameters

The string representation of an integer that acts as an indicator of the
number of parameter values stored by the federate.

17

RTI 1.0 Programmer’s Guide

The Manager::Federation class provides information about the federation state and is published by the RTI
(one per federation.) For adescription of the attributes implemented, see Table 2-4: Manager::Federation
Attribute Definitions.

Table 2-4: Manager::Federation Attribute Definitions

Parameter Definition
FederationName The string name of the federation.
FederationState The string representation of the integra value of the

RTI::FederationStateType enumeration. This value indicates the
pause/resume state of the federation as awhole

Federatesl nFederation The string representation of the integral number of federatesjoined in
the federation execution.

SavelsScheduled The string representation of the boolean value indicating whether or not
afederation saveis currently scheduled.

ScheduledSaveTime The string representation of the double-precision floating-point number

representing the logical time of the scheduled federation save (or
positive infinity if no save is scheduled.)

RTlversion The string representation of the version number of the federation
executive (in theinitia release of RTI 1.0, thisis1.0.1.)

The Manager::Federate::Alert interaction allows the RTI to inform the federation when an exceptional
condition occurs in afederate. For a description of the parameters of this interaction, see Table 2-5:
Manager::Federate::Alert Parameter Definitions.

Table 2-5: Manager::Federate::Alert Parameter Definitions

Parameter Definition
FromFederate The string representation of the initiating federate’ s handle.
AlertSeverity The string representation of the integral value of the LogType

enumeration. Possible values are RTI_EXCEPTION=0,
RTI_INTERNAL_ERROR, RTI_FEDERATE_ERROR,
RTI_WARNING, RTI DIAGNOSTIC.

AlertText The string representation of the reason of the alert.

AlertlD The string representation of the serial number for an exception.

The Manager::Federate:: Servicel og interaction allows detailed tracing of RTlambassador and
FederateAmbassador method invocations. The generation of such can be toggled using the
Manager::Action::Control interaction. For a description of the attributes implemented, see Table 2-6:
Manager::Federate:: Servicel og Parameter Definitions.

Table 2-6: Manager ::Federate::Servicel og Parameter Definitions

Parameter Definition

FromFederate The string representation of the initiating federate's handle.

ServiceName The string method name of the service call generating the interaction.

Servicelnitiator The string representing the initiator of the service call (FED for
RTlambassador methods or RT | for FederateAmbassador methods.)

18

RTI 1.0 Programmer’s Guide

The Manager::Federate:: Servicel og:: Servicel ogArguments interaction allows detailed tracing of
RTlambassador and FederateAmbassador method invocations including the arguments provided in each call.
The generation of such can be toggled using the Manager::Action::Control interaction. For a description of
the attributes implemented, see Table 2-7: Manager::Federate:: Servicel og:: Servicel ogArguments Parameter

Definitions.

Table 2-7: Manager::Federate::ServicelL og::ServiceL ogArguments Parameter

Definitions
Parameter Definition
FromFederate The string representation of the initiating federate's handle.
ServiceName The string method name of the service call generating the interaction.
Servicel nitiator The string representing the initiator of the service call (FED for
RTlambassador methods or RT | for FederateAmbassador methods.)
Handlel Meaning is dependent on service invoked. Parameter is represented as a
string.
Handle2 Meaning is dependent on service invoked. Parameter is represented as a
string.
HandleSet Meaning is dependent on service invoked. Parameter is represented as a

string.

ObjectIDorCount

Meaning is dependent on service invoked. Parameter is represented as a
string.

TagOrLabel OrName Meaning is dependent on service invoked. Parameter is represented as a
string.

Time The string representation of the time provided to the service invoked.

Enumeration Meaning is dependent on service invoked. Parameter is represented as a
string.

Boolean Meaning is dependent on service invoked. Parameter is represented as a

string.

The Manager::Federate::Objectl nformation interaction is sent by the RTI in responseto a
Manager::Federate:: Action::RequestObjectinformation interaction sent by afederate. It reports information
about the internal state the RTI maintains for the object. For a description of the parameters implemented,
see Table 2-8: Manager::Federate:: Objectlnformation Parameter Definitions.

Table 2-8: Manager::Federate::Objectlnformation Parameter Definitions

Parameter Definition

FromFederate The string representation of the initiating federate's handle.

ObjectID The string representation of the ObjectID that thisinteraction id
reporting information on.

L ockedAttributes The string representation of the attributes that are owned by a federate.

RegisteredClass The string representation of the class that was registered by the
registering federate.

RepresentedClass The string representation of the class that was discovered by the
fromFederate.

The Manager::Federate::PublishingClass interaction is sent by the RTI in response to a
Manager::Federate:: Action::RequestPublicationTree interaction sent by afederate. It reports the current

19

RTI 1.0 Programmer’s Guide

publication state for afederate. For a description of the parameters implemented, see Table 2-9:
Manager::Federate:; PublishingClass Parameter Definitions.

Table 2-9: Manager::Federate::PublishingClass Parameter Definitions

Parameter Definition
FromFederate The string representation of the initiating federate's handle.
ObjectClass The string representation of the object class and attributes published for

one object class. The format of the string is“ ClassHandle”.

InteractionClass

The string representation of the interaction class handle. The format of
the string is
“ClassHandl e:attributeHandl e attributeHandle, ... attributeHandl €”.

The Manager::Federate:: SubscribingClass interaction is sent by the RTI in responseto a
Manager::Federate:: Action::RequestSubscriptionTree interaction sent by afederate. It reports the current
subscription state for afederate. For a description of the parameters implemented, see Table 2-10:
Manager::Federate:: SubscribingClass Parameter Definitions.

Table 2-10: Manager::Federate::SubscribingClass Parameter Definitions

Parameter Definition
FromFederate The string representation of the initiating federate's handle.
ObjectClass The string representation of the object class and attributes published for

one object class. The format of the string is “ ClassHandl€e”.

InteractionClass

The string representation of the interaction class handle. The format of
the string is
“ClassHandl e:attributeHandl e attributeHandle, ... attributeHandl €”.

The Manager::Federate::Action interaction is used to perform an action on aremote federate or afederate’s
local RTI component. For a description of the parameters implemented, see Table 2-11.
Manager::Federate:Action Parameter Definitions.

Table 2-11: Manager::Federate:Action Parameter Definitions

Parameter Definition
FromFederate The string representation of the initiating federate's handle.
ToFederate The string representation of the receiving federate's handle.

The Manager::Federate:: Action::RequestPublicationTree interaction is used to request that the RTI provide
the federate with the current publications of afederate. For a description of the parameters implemented, see
Table 2-12: Manager::Federate::Action::RequestPublicationTree Parameter Definitions.

Table 2-12: Manager::Federate::Action::RequestPublicationTree Parameter Definitions

Parameter Definition

FromFederate

The string representation of theinitiating federate's handle.

ToFederate

The string representation of the receiving federate's handle.

20

RTI 1.0 Programmer’s Guide

The Manager::Federate:: Action::RequestSubscriptionTree interaction is used to request that the RTI provide
the federate with the current subscriptions of afederate. For a description of the parameters implemented, see
Table 2-13: Manager::Federate:: Action::RequestSubscriptionTree Parameter Definitions.

Table 2-13: Manager::Federate::Action::RequestSubscriptionTree Parameter

Definitions
Parameter Definition
FromFederate The string representation of the initiating federate's handle.
ToFederate The string representation of the receiving federate's handle.

The Manager::Federate:: SetTiming interaction allows modification of afederate’ s periodic rate that the RTI
will automatically update the Manager::Federate attributes related to federate identity, time, and objects
respectively. The default value for the periodic rateis positive infinity - this means only one update occurs
at startup by default. This value can also be specified by the MOM_TIME _RESOLUTION valuein the
RID file. For adescription of the parametersimplemented in thisinteraction, see Table 2-14:
Manager::Federate: SetTiming Parameter Definitions.

Table 2-14: Manager::Federate:SetTiming Parameter Definitions

Parameter Definition

FromFederate The string representation of the initiating federate's handle.

ToFederate The string representation of the federate’s handle that the interaction is
intended to modify.

FedReportPeriod The string representation of the integer that is the number of seconds

between MOM updates of federate attributes (Hostname, federate name,
fedex name, federate handle, and RTI version).

TimeReportPeriod The string representation of the integer that is the number of seconds
between MOM updates of federate time attributes(lookahead, federate
time, constrained, regulating, TSO length, and FIFOlength)

ObjectReportPeriod The string representation of the integer that is the number of seconds
between MOM updates of federate object attributes (Total ObjectCount,
HoldingTokensObjectCount, Del etedObjectCount, NumAttributes,
NumParameters, NumBytes| nAttributes, and NumByteslnParamaters)

The Manager::Federate:: Action::RequestObj ectInformation interaction causes the RTI to send a
Manager::Federate:: ObjectInformation interaction informing a federate of the state it is maintianing for a
specific object. For a description of the parametersimplemented in this interaction, see Table 2-15:
Manager::Federate:: Action::RequestObj ectI nformation Parameter Definitions.

Table 2-15: Manager::Federate::Action::RequestObjectl nformation Parameter

Definitions
Parameter Definition
FromFederate The string representation of the initiating federate's handle.
ToFederate The string representation of the federate’ s handle that the interaction is
intended to modify.
ObjectID The string representation of the ObjectID that information is being
reguested for.

21

RTI 1.0 Programmer’s Guide

The Manager::Federate:: Action::ModifyAttributeState interaction allows federates to modify the ownership
token status of an attribute-instance. This should not be attempted by someone unfamiliar with RTI
internals. For adescription of the parametersimplemented in this interaction, see Table 2-16:
Manager::Federate:: Action::ModifyAttributeState Parameter Definitions.

Table 2-16: Manager::Federate::Action::ModifyAttributeState Parameter Definitions

Parameter Definition

FromFederate The string representation of the initiating federate's handle.

ToFederate The string representation of the federate’s handle that the interaction is
intended to modify.

ObjectID The string representation of the object whose attribute token statusis
to be modified.

Attributel D The string representation of the attribute whose instance’ s token status
isto be modified.

TokenState The string representation of the integral value of the RTI::TokenState
enumeration to set the attribute-instance to.

The Manager::Federate:: Action::RemoteServicel nvocation::DoResignFederationExecution interaction
executes the equivalent of the RTlambassador:: resignFeder ationExecution service on the target federate. For
adescription of the parametersimplemented in this interaction, see Table 2-17:

Manager::Federate:: Action::RemoteServicel nvocati on:: DoRes gnFederationExecution Parameter
Definitions.

Table 2-17:
Manager ::Federate::Action::RemoteServicel nvocation::DoResignFeder ationExecution
Parameter Definitions

Parameter Definition

FromFederate The string representation of the initiating federate's handle.

ToFederate The string representation of the federate's handle that the interaction is
intended to modify.

ResignAction The string representation of the integral value of the
RTI::ResignAction enumeration to use as an argument to the
resign-ederationExecution. service.

The Manager::Federate:: Action::RemoteServicel nvocation:: DoDel eteObj ect interaction executes the
equivalent of the RTlambassador: :deleteObject on the target federate. For a description of the parameters
implemented in this interaction, see Table 2-18:

Manager::Federate:: Action::RemoteServicel nvocation:: DoDel eteObject Parameter Definitions.

Table 2-18: Manager ::Federate::Action::RemoteServicel nvocation::DoDeleteObject
Parameter Definitions

Parameter Definition

FromFederate The string representation of the initiating federate's handle.

ToFederate The string representation of the federate’ s handle that the interaction is
intended to modify.

ObjectID The string representation of the object ID to use as an argument to the

22

RTI 1.0 Programmer’s Guide

Parameter Definition
deleteObject service.

Time The string representation of the federatin time to use as an argument to
the del eteObject service.

Tag The string to use as an argument to the deleteObject service.

The Manager::Federate:: Action::RemoteServicel nvocation::DoSetL ookahead interaction executes the
equivalent of the RTlambassador:: setl.ookahead method on the target federate. For a description of the
parameters implemented in thisinteraction, see Table 2-19:

Manager::Federate:: Action::RemoteServicel nvocation::DoSetl ookahead Parameter Definitions.

Table 2-19: Manager::Federate::Action::RemoteServicel nvocation::DoSetL ookahead
Parameter Definitions

Parameter Definition

FromFederate The string representation of the initiating federate's handle.

ToFederate The string representation of the federate’ s handle that the interaction is
intended to modify.

L ookahead The string representation of adouble that isthe value the federate’ s
lookahead will be set to. The lookahead value is specified as a double.

The Manager::Federate:: Action::RemoteServicel nvocation::DoSet TimeConstrained interaction executes the
equivalent of the RTlambassador:: setTimeConstrained method on the target federate. For a description of the
parameters implemented in thisinteraction, see Table 2-20:

Manager::Federate:: Action::RemoteServicel nvocation::DoSet TimeConstrained Parameter Definitions.

Table 2-20:
Manager::Federate::Action::RemoteServicel nvocation::DoSetTimeConstrained
Parameter Definitions

Parameter Definition

FromFederate The string representation of the initiating federate's handle.

ToFederate The string representation of the federate’s handle that the interaction is
intended to modify.

State The string representation of an integer (True=0, False=1) that toggles
whether the federate is constrained or not constrained. The specified
value gets passed to an invocation of setTimeConstrained().

The Manager::Federate:: Action::RemoteServicel nvocation::DoT urnRegul ationOn interaction executes the
equivalent of the RTlambassador ::turnRegulationOn method on the target federate. For a description of the
parameters implemented in thisinteraction, see Table 2-21:

Manager::Federate:: Action::RemoteServicel nvocation:: DoTurnRegul ationOn Parameter Definitions.

Table 2-21:
Manager::Federate::Action::RemoteServicel nvocation::DoTurnRegulationOn Parameter
Definitions

Parameter Definition
FromFederate The string representation of theinitiating federate's handle.

23

RTI 1.0 Programmer’s Guide

Parameter

Definition

ToFederate

The string representation of the federate’ s handle that the interaction is
intended to modify.

The Manager::Federate:: Action::RemoteServicel nvocation::DoTurnRegul ationOff interaction executes the
equivalent of the RTlambassador ::turnRegulationOff method on the target federate. For a description of the
parameters implemented in thisinteraction, see Table 2-22:

Manager::Federate:: Action::RemoteServicel nvocation::DoTurnRegul ationOff Parameter Definitions.

Table 2-22:

M anager::Federate::Action::RemoteServicel nvocation::DoTurnRegulationOff Parameter
Definitions

Parameter Definition

FromFederate The string representation of the initiating federate's handle.

ToFederate The string representation of the federate's handle that the interaction is

intended to modify.

24

RTI 1.0 Programmer’s Guide

3. HLA Service to C++ Mapping

This section describes the mapping from the HLA 1.0 Interface Specification to C++. The focus of this
section is to describe the services that are implemented, the methods that should be used together and the
memory allocation rules for key methods. Note: Only the servicesthat are implemented in F.0 are
described in this section.

3.1 Federation Management

Table 3-23: Federation Management Services

Section Service Title Service
Implemented
2.1 Create Federation Execution Yes
2.2 Destroy Federation Execution Yes
2.3 Join Federation Execution Yes
2.4 Resign Federation Execution Yes
2.5 Reguest Pause Yes
2.6 Initiate Pause t Yes
2.7 Pause Achieved Yes
2.8 Regquest Resume Yes
2.9 Initiate Resume t Yes
2.10 Resume Achieved Yes
2.11 Request Federation Save Yes
2.12 Initiate Federate Save T Yes
2.13 Federate Save Begun Yes
2.14 Federate Save Achieved Yes
2.15 Regquest Restore Yes
2.16 Initiate Restore T Yes
2.17 Restore Achieved Yes

25

RTI 1.0 Programmer’s Guide

3.1.1 Create Federation Execution
NAME

createFederationExecution - create a named federation execution and register it with
the RTI executive

HLA INTERFACE SPECIFICATION SERVICE
2.1 - Federation Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void
RTlambassador ::createFederationExecution (
const RTI::FederationExecutionName executionName

throw
RTI::FederationExecutionAlreadyEXxists,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

ARGUMENTS
executionName
string specifying the name of the federation execution to create. The caller is
responsible for freeing the memory used by this string and may do so at any
time after the completion of the cal.

DESCRIPTION
This method first queriesthe RT1 executive to determine if a federation executive
already exists for the given federation. If not, it attempts to fork a subprocess to
run the federation execution executable located at $RTI_HOME/bin/fedex.sh.
Upon successful initialization, the federation executive will inform the RTI
executive of its existence; only at this point may federates begin joining the
execution.

RETURN VALUES
A non-exceptional exit from this method indicates that the RTI executive has
approved the creation of the named federation execution and that the federation
execution subprocess has been forked.

It isimportant to note that a non-exceptional return does not guarantee that the
federation execution has been successfully created; errorsthat occur in the
initialization of the federation execution subprocess (e.g. bad path to the federation
execution executable) are not detected by the

RTlambassador: : createFeder ationExecution method. Output from the federation
executive islogged to afile Xter m.##### (where ##### isa PID) in the current
directory; thislog should be consulted when attempting to diagnose problems with
federation executive initialization.

Even when the federation executive initialization is successful, there is necessarily a

26

RTI 1.0 Programmer’s Guide

(non-negligible) period of time between the return of the

RTlambassador :: createFeder ationExecution call and the time that the federation
execution isinitialized, registered, and ready to accept joining federates. Asa
result, calls to RTlambassador: :joinFeder ationExecution immediately following
callsto RTlambassador: : createFeder ationExecution will fail; applications should
have atime delay between these two calls and/or be prepared to call
RTlambassador: :joinFederationExecution multiple times to ensure that the
federation executive has had time to be initialized.

WINDOWS NT NOTES
On Windows NT, the path of the executable that is forked to start the federation
executive is %RTI_ HOME%.exe. Currently, output from the federation executive
isnot logged on Windows NT.

EXCEPTIONS
RTI:: FederationExecutionAlreadyExists - A federation executive for the given
federation has already been registered with the RTI executive. Federation
executives will unregister themselves with the RT1 executive upon termination;
however, sometimes an abnormal termination of afederation executive (e.g. a"kill
-9") will result in a defunct federation executive still being registered. If this
occurs, it is necessary to unregister the federation executive manually viathe RTI
executive console interface.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador::tick.

RTI::SavelnProgress - The attempted action would have resulted in achange in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE AL SO

RTlambassador: :joinFederationExecution,
RTlambassador : : destr oyFeder ationExecution

27

RTI 1.0 Programmer’s Guide

3.1.2 Destroy Federation Execution

NAME
destroyFederationExecution - unregister a named federation execution with the RTI
executive and shut down the federation executive

HLA INTERFACE SPECIFICATION SERVICE
2.2 - Federation Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void
RTlambassador::destroyFederationExecution (
const RTI::FederationExecutionName federationName

throw
RTI::FederatesCurrentlyJoined,
RTI::FederationExecutionDoesNotEXxist,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

ARGUMENTS
federationName
string specifying the name of the federation execution to destroy. The caler
isresponsible for freeing the memory used by this string and may do so at
any time after the completion of the call.

DESCRIPTION
This method queriesthe RTI executive for the location of the federation executive
for the given federation. If one exists, it is asked to destroy itself. If the
prerequisites for federation executive destruction are met (i.e. there are no federates
joined to the federation execution), the federation executive notifies the RTI
executive of itsintention to shut down and exits.

There are no restrictions on whom may destroy the federation execution; afederate
need not be the creator of the federation executive, or even have been amember of
the federation execution.

RETURN VALUES
A non-exceptional return indicates that the federation execution has been
successfully destroyed.

EXCEPTIONS
RTI::FederatesCurrentlyJoined - There are still federates joined in the federation
execution. All federates must have resigned (or been manually removed viathe
federation executive console) from the federation execution before the it can be
destroyed. Note that the federation executive automatically removes non-existent
federates from the federation (even if they fail to resign properly), so it shouldn't be
necessary to manually remove federates under normal circumstances.

28

RTI 1.0 Programmer’s Guide

RTI: : FederationExecutionDoesNotExist - The RTI does not have afederation
executive registered for the given federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the
RTlambassador; most likely caused by a call to an RTI ambassador method from
inside a FederateAmbassador callback method invoked by RTlambassador ::tick.

RTI::SavelnProgress - The attempted action would have resulted in achange in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE AL SO
RTlambassador: : createFeder ationExecution

29

RTI 1.0 Programmer’s Guide

3.1.3 Join Federation Execution

NAME

joinFeder ationExecution - request permission to participate in anamed federation
execution from the federation executive and associate the RTI ambassador with the
federation execution

HLA INTERFACE SPECIFICATION SERVICE
2.3 - Federation Management (federate initiated)

SYNOPSIS

#include <RTI.hh>

RTI::FederateHandle

joinFeder ationExecution (
const RTI::FederateName your Name
const RTI::FederationExecutionName executionName
RTI::FederateAmbassador Ptr feder ateAmbassador Reference

throw
RTI::FederateAlreadyExecutionM ember,
RTI::FederationExecutionDoesNotEXxist,
RTI::CouldNotOpenFED,
RTI::ErrorReadingFED,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

ARGUMENTS
yourName

string indicating the symbolic name by which the federate will be known to
the federation.

executionName

string indicating the name of the federation execution to join.

The caller isresponsible for freeing storage space used by these strings and may do
S0 at any time after the completion of the call.

feder ateAmbassador Ref

pointer to an instance of an application-defined subclass of

RTI:: FederateAmbassador on which RTI-initiated callbackswill be invoked.
The caller isresponsible for freeing the storage associated with this object,
but it should not do so until the object is no longer needed by the RTI
ambassador (i.e. RTlambassador::resignFederationExecution has been
caled.)

DESCRIPTION
This method queriesthe RTI executive for the location of the federation executive
responsible for the given named federation execution. It then issues arequest to the
federation executive to join the federation execution. Lastly, RTI ambassador

30

RTI 1.0 Programmer’s Guide

internals are initialized using the Federation Execution Data (FED) file whose path
isgiven by $RTI_CONFIG/[federation name] .fed.

Upon successful completion, the RTI ambassador is associated with a particular
federation execution and will notify the federate of changes in federation state
through the invocation of federateAmbassador Ref callbacks. Keep in mind that no
datawill be presented to the federate ambassador until the federate has declared
interest via the appropriate declaration management services.

Also upon successful completion, the Management Object Model (MOM) Manager
has published an object of class Federate representing the local federate and sent out
aninitia attribute update for this object.

RETURN VALUES
The federate handle returned by this method is anumeric value that the RTI has
associated with the federate (precisaly, it represents the federate's offset in a
"federate vector” that is used internally by the RTI.) Inthe 1.0 RTI, thisvalueis
probably of very little interest to the application.

WINDOWS NT NOTES
On Windows NT, the path of the FED file is given by %RTI_HOME%federation
name] .fed.

EXCEPTIONS
RTI:: FederateAlreadyExecutionMember - The RTI ambassador is aready associated
with afederation execution. An RTI ambassador may only be associated with one
federation execution at a given time (although the same RT1 ambassador may be
associated with different federation executions at different times and different RTI
ambassadors may be associated with different federation executions at the same
time.)

RTI: : FederationExecutionDoesNotExist - There was no federation executive
registered for the given named federation execution.

RTI::CouldNotOpenFED - The FED file could not be found at
$RTI_CONFIG/[federation name] .fed.

RTI::ErrorReadingFED - The FED file was not in the correct format. This can occur
if one of the classes or interactions used by the MOM manager is missing or
incorrect; see the example FED filesin the RTI distribution for the definitions of
MOM data types.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador ::tick.

RTI::SavelnProgress - The attempted action would have resulted in achange in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

31

RTI 1.0 Programmer’s Guide

SEE ALSO
RTlambassador

RTlambassador:
RTlambassador:
RTlambassador:
RTlambassador:
RTlambassador:

: createFederationExecution,
:resignFederationExecution RTlambassador : : publishObjectClass,
:publishinteractionClass

:subscribeObjectClassAttribute,

:subscribel nteractionClass RTlambassador : : tur nRegul ationOn,
:setTimeConstrained

32

RTI 1.0 Programmer’s Guide

3.1.4 Resign Federation Execution

NAME
resignFederationExecution - resolve ownership of attributes and notify the
federation executive that the federate no longer wishes to participate in the
federation execution

HLA INTERFACE SPECIFICATION SERVICE
2.4 - Federation Management (federate initiated)

SYNOPSIS
enum RTI::ResignAction RELEASE_ATTRIBUTES= 1,
DELETE OBJECTS DELETE_OBJECTS AND_RELEASE ATTRIBUTES
NO_ACTION ;

void
RTlambassador ::resignFeder ationExecution (
RTI::ResignAction theAction

throw (
RTI::FederateOwnsAttributes,
RTI::FederateNotExecutionM ember,
RTI::InvalidResignAction,
RTI::ConcurrentAccessAttempted,
RTI::RTlinternalError

)

ARGUMENTS
theAction
enumerated value indicating the desired policy for relinquishment of
federate-owned attributes.

DESCRIPTION
This method informs the federation executive that the federate no longer wishes to
participate in the federation execution. Before doing so, it is necessary to resolve
ownership of any object-attributes owned by the federate. The four resolution
policies defined are:

RELEASE ATTRIBUTES
federate releases control of any owned attributes (including privilege-to-
delete attributes) before resigning. Thisis similar to doing an unconditiona
divestiture of every attribute owned by the federate. Any ownership tokens
that aren't assumed by another federate become "orphaned”. Orphaned
tokens continue to exist in the federation (specifically, they are tracked by
the RTI internally by another federate process or by the federation
executive) and are eligible for acquisition by any interested federate
(however, no notification of the existance of such attributesis provided
other than the initial RTI::requestAttributeOwner shipAssumption.)

DELETE OBJECTS
resigning federate deletes al objects for which it holds the privilege to delete
(i.e. owns the privilegeToDelete attribute that isimplicitly defined for every
object.) Theeffect of thisoption isthe same asif the federate had explicitly

33

RTI 1.0 Programmer’s Guide

caled RTlambassador :: deleteObject for every object for which it holds the
privilegeToDelte token. If the federate owns attributes of objects for which
it does not hold the delete privilege, these attributes become "zombies' (see
NO ACTION below.)

DELETE OBJECTS AND_RELEASE ATTRIBUTES
resigning federate first deletes any objects for which the federate holds the
delete privilege (see DELETE_OBJECTSabove), then rel eases ownership
of any remaining owned attributes (see RELEASE_ATTRIBUTES above.)
Thisis probably the best option to use in most situations.

NO_ACTION
action istaken upon resignation; all attributes and objects owned by the
federate will become "zombies', i.e. technically till in existance in the
federation but immutable, non-discoverable and not eligible for acquisition
by other federates.

The RTlambassador: : resignFederationExecution method will not return until the
ownership of all federate-owned attributes has been resolved as prescribed by the
resign action and the connection between the federate and the federation execution
has been terminated. At thistime, the interna state of the RTI ambassador will
have been reset, allowing it to be associated with another federation execution
through a subsequent invocation of RTlambassador ::joinFederationExecution. The
federate ambassador associated with the federation execution is no longer needed at
this point and may be disposed of at the federate's leisure.

Any messages queued for delivery to the federate at the time of resignation will be
lost.

RETURN VALUES
A non-exceptional return indicates that the resignation was successful, as described
in the previous section.

EXCEPTIONS
RTI:: FederateOwnsAttributes - Not thrown in 1.0.

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::InvalidResignAction - The parameter specifying the ownership resolution
policy was not a recognized value.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador ::tick.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

RTI::UnimplementedService - An invalid variation of the method was invoked.

SEE ALSO
RTlambassador: :joinFederationExecution,
RTlambassador : : requestAttributeOwner shipDivestiture,

RTI 1.0 Programmer’s Guide

FederateAmbassador : : requestAttributeOwner shipAssumption,
RTlambassador: :deleteObject , RTlambassador: : destroyFeder ationExecution

35

RTI 1.0 Programmer’s Guide

3.1.5 Request Pause

NAME

requestPause - request that all federates in the federation suspend execution (as
defined by a"pause label™) as soon as possible

HLA INTERFACE SPECIFICATION SERVICE
2.5 - Federation Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void
RTlambassador::requestPause (
const RTI::Pausel abel label

throw
RTI::FederationAlreadyPaused,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

ARGUMENTS
label

null-terminated string that is passed to the corresponding invocations of
FederateAmbassador::initiatePause. This parameter is not interpreted by the
RTI itself, but is provided as a means for the requesting federate to specify a
textual description of the reason for the pause request or any other
information relevant in the context of the federation. The federateis
responsible for freeing the storage associated with this string and may do so
at itsleisure upon completion of the call.

DESCRIPTION
This method notifies all remote federates of the federate's desire to suspend
federation execution, resulting in invocations of the
FederateAmbassador: :initiatePause method for each federate in the federation
execution. Upon receipt of such arequest, federates are expected to suspend their
execution as soon as possible and notify the RTI viathe
RTlambassador: : pauseAchieved method when this has been accomplished.

Note that the RTI does not attach any meaning to the notion of "pause”; federation
developers may define different types of pauses associated with different labelsin a
way that makes sensein the context of agiven federation. In particular, pausing a
federate does not preclude the sending and recipt of updates and interactions or the
utilization of any other RTI services by that federate during the pause period.

The RTI does not currently define a mechanism by which afederate is automatically
notified when arequested pause has been achieved; currently the best way to do this
isto periodicaly cal RTlambassador::initiatePause until the
RTI::FederationAlreadyPaused exception is thrown.

36

RTI 1.0 Programmer’s Guide

RETURN VALUES
A non-exceptiona return indicates that federate has successfully communicated its

desire to suspend federation execution and that the federation execution is not
already paused.

EXCEPTIONS
RTI::FederationAlreadyPaused - An attempt was made to suspend execution of an
already-paused federation.

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador ::tick.

RTI::SavelnProgress - The attempted action would have resulted in achange in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE AL SO

RTlambassador: : pauseAchieved, FederateAmbassador::initiatePause,
RTlambassador: :requestResume, RTlambassador::initiateResume

37

RTI 1.0 Programmer’s Guide

3.1.6 Initiate Pause +

NAME

initiatePause - instructs the federate to suspend execution (as defined by a"pause
label") as soon as possible

HLA INTERFACE SPECIFICATION SERVICE
2.6 - Federation Management (RTI initiated)

SYNOPSIS
#include <RTI.hh>

virtual

void

FederateAmbassador ::initiatePause (
const RTI::PauseL abel label

throw (
RTI::FederateAlreadyPaused,
RTI::Federatel nternalError

)

ARGUMENTS
label

null-terminated string value that was supplied as the argument to the
RTlambassador :: requestPause method that requested the pause. This
parameter is not interpreted by the RTI itself, but is provided as ameansfor
the requesting federate to specify atextual description of the reason for the
pause request or any other information relevant in the context of the
federation. The RTI retains ownership of the storage associated with this
string, so the federate must make acopy if it wishesto retain its value after
the completion of the call.

DESCRIPTION
This callback isinvoked in response to a pause request
(RTlambassador: :requestPause) made by aremote federate. Note that the RTI does
not attach any meaning to the notion of "pause”; federation devel opers may define
different types of pauses associated with different labelsin away that makes sense
in the context of agiven federation. In particular, pausing a federate does not
preclude the sending and recipt of updates and interactions or the utilization of any
other RTI services by that federate during the pause period.

A pause-initiation request supercedes any previous requests; the pause label given
as an argument to RTlambassador : : pauseAchieved should be the pause label
associated with the most recent pause-initiation request.

RETURN VALUES
A non-exceptiona return indicates that the federate is not already paused and will
attempt to suspend execution in accordance with the pause request as soon as
possible.

EXCEPTIONS
RTI::FederateAlreadyPaused - The federate has already suspended its execution and

38

RTI 1.0 Programmer’s Guide

notified the RTI of such viathe RTlambassador :: pauseAchieved method.

RTI::FederatelnternalError - An error internal to the federate has occurred; this
exception will result in an entry being made to the federate's RTI log.

SEE AL SO

RTlambassador: : pauseAchieved, RTlambassador::requestPause,
FederateAmbassador : : initiateResume

39

RTI 1.0 Programmer’s Guide

3.1.7 Pause Achieved

NAME
pauseAchieved - inform the RTI that the federation has suspended execution as per
the most recent pause request

HLA INTERFACE SPECIFICATION SERVICE
2.7 - Federation Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void
RTlambassador ::pauseAchieved (
const RTI::Pausel abel label

throw
RTI::UnknownL abel,
RTI::NoPauseRequested,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

ARGUMENTS
label
null-terminated " pause label" associated with the pause request. This should
be the same as the argument to the most recent
FederateAmbassador: :initiatePause invocation. The federate isresponsible
for freeing the memory used by this string and may do so at any time upon
the completion of the call.

DESCRIPTION
This method informs the RTI that the federate has successfully achieved a
suspension of execution, as prescribed by the pause label argument to the most
recent FederateAmbassador ::initiatePause invocation. The federate should remain
suspended in accordance with the terms of the pause label until instructed to resume
via aFederateAmbassador ::initiateResume notification.

RETURN VALUES
A non-exceptional return indicates that the RTI has been notified of the federate's
successful suspension of execution.

EXCEPTIONS
RTI::UnknownLabel - The label provided does not match the label associated with
the most recent outstanding pause request.
RTI::NoPauseRequested - There is not an outstanding pause request.

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

40

RTI 1.0 Programmer’s Guide

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador ::tick.

RTI::SavelnProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE AL SO
FederateAmbassador ::initiatePause, RTlambassador::requestPause,
RTlambassador: :requestResume, FederateAmbassador::initiateResume

41

RTI 1.0 Programmer’s Guide

3.1.8 Request Resume

NAME
requestResume - request that a paused federation resume execution as soon as
possible

HLA INTERFACE SPECIFICATION SERVICE
2.8 - Federation Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void

RTlambassador::requestResume ()

throw
RTI::FederationNotPaused,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::RTlinternalError,
RTI::Savel nProgress,
RTI::Restorel nProgress

)

DESCRIPTION
This service instructs the federates in the federation execution to resume execution
as soon as possible after the successful completion of a federation pause. The
FederateAmbassador : :initiateResume method of paused remote federates will be
invoked to notify them of the continuance of federation execution.

Thereis currently no easy way for afederate to determine when all federates have
been resumed execution. The Management Object Model currently providesthe
only facility for doing this.

The federate requested the continuance of federation execution need not be the same
federate that requested the pause.

RETURN VALUES
A non-exceptional return indicates that the federate has successfully communicated
its desire to resume federation execution.

EXCEPTIONS
RTI::FederationNotPaused - The federation execution isnot currently in a
suspended state.

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador::tick.

RTI::SavelnProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a"save" operation.

42

RTI 1.0 Programmer’s Guide

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE AL SO

RTlambassador: :resumeAchieved, FederateAmbassador::initiateResume,
RTlambassador: : requestPause

43

RTI 1.0 Programmer’s Guide

3.1.9 Initiate Resume +

NAME
initiateResume - instructs a paused federate to resume execution as soon as possible

HLA INTERFACE SPECIFICATION SERVICE
2.9 - Federation Management (RTI initiated)

SYNOPSIS
#include <RTI.hh>

virtual
void
FederateAmbassador::initiateResume ()
throw (
RTI::FederateNotPaused,
RTI::Federatel nternalError

)

DESCRIPTION
This callback isinvoked in response to another federate's request to resume
federation execution (via the RTlambassador :: requestResume method.) The
federate should resume execution as soon as possible and notify the RTI of such
using the RTlambassador: : resumeAchieved service.

RETURN VALUES
A non-exceptional return indicates that the federate is currently paused and will
resume execution as soon as possible.

EXCEPTIONS
RTI::FederateAlreadyPaused - The federate is not currently in a state of suspended
execution.

RTI::FederatelnternalError - An error internal to the federate has occurred; this
exception will result in an entry being made to the federate's RTI log.

SEE AL SO
RTlambassador ::resumeAchieved, RTlambassador: :requestResume,
FederateAmbassador ::initiatePause

RTI 1.0 Programmer’s Guide

3.1.10 Resume Achieved

NAME
resumeAchieved - notify the RTI that the federate has resumed execution as per an
initiate resume request

HLA INTERFACE SPECIFICATION SERVICE
2.10 - Federation Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void

RTlambassador::requestResume ()

throw
RTI::FederationNotPaused,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

DESCRIPTION
This service method isinvoked to inform the RTI that the federate has resumed
execution in accordance with an outstanding Feder ateAmbassador ::initiateResume
request.

RETURN VALUES
A non-exceptional return indicates that the federate has communicated its desire to
resume execution.

EXCEPTIONS
RTI::FederationNotPaused - The federate is not currently in a suspended state.

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador::tick.

RTI::SavelnProgress - The attempted action would have resulted in achange in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
theinterna state of the RTI, which is not permitted during a"'restore” operation.

RTI::RTlinternalError - Aninternal error has occurred in RTI; consult the federate
log file for more details.

SEE AL SO
FederateAmbassador ::initiateResume, RTlambassador: :requestResume,

45

RTI 1.0 Programmer’s Guide

FederateAmbassador ; :initiatePause

46

RTI 1.0 Programmer’s Guide

3.1.11 Request Federation Save

NAME

requestFeder ationSave - request that the federation save its state at a specified
logicd time

HLA INTERFACE SPECIFICATION SERVICE
2.11 - Federation Management (federate initiated)

SYNOPSIS

#include <RTI.hh>

void

RTlambassador::requestFeder ationSave (
const RTI::SavelL abel |abel
RTI::FederationTime theTime

throw
RTI::FederationTimeAlreadyPassed,
RTI::InvalidFederationTime,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

A variation initiates the save as soon as possible regardless of the logical times of
the federates.

void

requestFeder ationSave (
const RTI::Savel abel label

throw
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

ARGUMENTS
labd

null-terminated string that is passed to the resulting invocations of
FederateAmbassador: :initiateFederateSave. This parameter is not
interpreted by the RTI itself, but is provided as a means for the requesting
federate to specify atextual description of the reason for the restore request
or any other information meaningful in the context of the federation. This
label isalso acomponent of the filenamesin which the RTI's internal state
is expected to be saved, alowing for differentiation among multiple saved
states. The federate isresponsible for freeing the storage associated with
this string and may do so at its leisure upon completion of the call.

47

RTI 1.0 Programmer’s Guide

theTime
logical timethat the federation save is to take place at (omission of this
argument implies that the save should take place as soon as possible.)

DESCRIPTION
This service alows the federate to initiate the federation save process. It will result
in invocations of FederateAmbassador: :initiateFederateSave being scheduled for
each remote federate. If alogical time for the save is not specified, such a callback
will immediately be queued for delivery (note that thiswill usually result in different
federates being saved at 0000000different logical times.)

RETURN VALUES
A non-exceptiona return indicates that the federation save has been initiated.

EXCEPTIONS
RTI::FederationTimeAlreadyPassed - The requested save timeislessthan the
current effective federate logical time (i.e. the federate'slogical time plus
lookahead.)

RTI::InvalidFederationTime - The requested savetimeisinvalid becauseit isless
than the effective logical time of one or more federates currently joined in the
federation execution.

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador::tick.

RTI::SavelnProgress - The attempted action would have resulted in achange in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTlambassador ::initiateFederateSave, RTlambassador :: federateSaveBegun,
FederateAmbassador: : requestRestore, RTlambassador :: federateSaveAchieved,
RTlambassador: : feder ateSaveNotAchieved,
FederateAmbassador: : timeAdvanceGrant, RTlambassador: : requestFederateTime

48

RTI 1.0 Programmer’s Guide

3.1.12 Initiate Feder ate Save +
NAME

initiateFederateSave - ingtructs the federate to save its state as of its current logical
time

HLA INTERFACE SPECIFICATION SERVICE
2.12 - Federation Management (RTI initiated)

SYNOPSIS
#include <RTI.hh>

virtual

void

FederateAmbassador::initiateFederateSave (
const RTI::Savel abel label

throw (
RTI::UnableToPerformSave,
RTI::Federatel nternalError

)

virtual

void

FederateAmbassador::initiateFederateSave (
const RTI::SavelL abel |abel
RTI::FederationTime theTime

throw (
RTI::InvalidFederationTime,
RTI::UnableToPerformSave,
RTI::Federatel nternalError

)
ARGUMENTS

label
null-terminated string that was passed to invocation of the
RTlambassador : :requestFeder ationSave service that requested the save.
This parameter is not interpreted by the RTI itself, but is provided as a
means for the requesting federate to specify atextual description of the
reason for the save request or any other information meaningful in the
context of the federation. The federate must make a copy of this parameter
if it wishesto retain its value after the completion of the call.

theTime

federation save time as specified to the invocation of the
RTlambassador : :requestFeder ationSave service that requested the save.
Note that this parameter is not really necessary as the RTI schedulesthe
federate saveinitiation at the appropriate time, i.e. such that the federate
should always begin its save as soon as possible after the receipt of this
callback.

DESCRIPTION

49

RTI 1.0 Programmer’s Guide

This callback instructs the federate to begin saving its state as soon as possible.

The federate should save its state as of the current federate logical time
(RTlambassador: : requestFederateTime), which should be the same as the theTime
parameter (if present.) The RTI will not initiate the federate save until it has
determined that it is "safe” for the federate to advance to the savetime, i.e. the
conditions necessary for a FederateAmbassador: :timeAdvanceGrant to the save time
have been met.

Upon the receipt of such a callback, the federate's logical time will not advance until
the federate has achieved the save or indicated that the save could not be achieved.
In particular, no time-stamp-ordered events with atime greater than the save time
will be delivered to the federate, and no FederateAmbassador : : timeAdvanceGrant
will be made.

The federate should notify the RTI using the RTlambassador :: federateSaveBegun
service when it has begun the save process.

RETURN VALUES
A non-exceptiona return value indicates that the federate has acknowledged the
save initiation request and will begin saving its state as soon as possible, notifying
the RTI of such viathe RTlambassador :: federateSaveBegun service.

EXCEPTIONS
RTI::InvalidFederationTime - The specified timeis less than the federate's current
logical time or greater than the time that the federation mostly recently requested to
advance to.

RTI::UnableToPerformSave - The federate is unable to perform a save at the current
time.

RTI::FederatelnternalError - An error interna to the federate has occurred; this
exception will result in an entry being made to the federate's RTI log.

SEE ALSO
RTlambassador::requestFederationSave, RTlambassador: : federateSaveBegun,
FederateAmbassador: : requestRestore, RTlambassador :: federateSaveAchieved,
RTlambassador: : feder ateSaveNotAchieved,
FederateAmbassador: : timeAdvanceGrant, RTlambassador: : requestFederateTime

50

3.1.13 Federate Save Begun

NAME

RTI 1.0 Programmer’s Guide

federateSaveBegun - notify the RTI that the federate has begun saving its internal
state as per an initiateFederateSave request

HLA INTERFACE SPECIFICATION SERVICE
2.13 - Federation Management (federate initiated)

SYNOPSIS

#include <RTI.hh>

void

RTlambassador ::federateSaveBegun ()

thr ow

RTI:
RTI::

RTI:

RTI::

RTI:
RTI:

)

:SaveNotlnitiated,
FederateNotExecutionM ember,
:ConcurrentAccessAttempted,
Savel nProgress,
:RestorelnProgress,
‘RTlinternalError

A variation is unimplemented:

void

RTlambassador::federateSaveBegun (
RTI::FederationTimetheTime

throw
RTI::SaveNotlnitiated,
RTI::InvalidFederationTime,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::RTlinternalError,
RTI::UnimplementedService

)

ARGUMENTS
theTime (unused)

logical time of the federate as of the save. This parameter is unnecessary, as
the federate save necessarily must begin at the same logical time asthe

FederateAmbassador : :initiateFeder ateSave request.

DESCRIPTION
The federate utilizes this service to inform the RTI that it has begun saving its state
in compliance with an outstanding FederateAmbassador ::initiateFeder ateSave
request. The federate should do this as soon as possible after the initiation of the
save and will be unable to advance in time (and therefore receive time-stamp-
ordered events) or utilize any other service that would change the internal state of
the RTI until the completion of the save.

The federate should notify the RTI using the

51

RTI 1.0 Programmer’s Guide

RTlambassador: : federateSaveAchieved or

RTlambassador : : feder ateSaveNotAchieved services when the save has been
completed. At thistimethe RTI will wait for al other federatesto complete their
saves and then saveitsinternal state.

RETURN VALUES
A non-exceptional return indicates that the RTI acknowledges the beginning of the
federate save and the federate may proceed to save its state.

EXCEPTIONS
RTI::SaveNotlnitiated - Thereis no currently outstanding request for afederate
save.

RTI::InvalidFederationTime - The federation time argument provided does not
match the time of the save, i.e. the federate's current logical time. (Not thrown in
RTI 1.0.)

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador ::tick.

RTI::SavelnProgress - The attempted action would have resulted in achange in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An internal error has occurred in the RTI; consult the
federate log file for more details.

RTI::UnimplementedService - This service is not implemented in RTI 1.0.
SEE ALSO

FederateAmbassador: : initiateFederateSave, RTlambassador : : feder ateSaveAchieved,
RTlambassador : : feder ateSaveNotAchi eved

52

RTI 1.0 Programmer’s Guide

3.1.14 Federate Save Achieved

NAME
federateSaveAchieved, federateSaveNotAchieved - notify the RTI that the federate
has completed an attempted federate save

HLA INTERFACE SPECIFICATION SERVICE
2.14 - Federation Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void
RTlambassador::federateSaveAchieved ()
throw (
RTI::SaveNotlnitiated,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::RTlinternalError

)

void

RTlambassador ::federateSaveNotAchieved ()

throw (
RTI::SaveNotlnitiated,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::RTlinternalError

)

DESCRIPTION
This service should be invoked by the federate when it has completed a federate
save begun by an RTlambassador : : feder ateSaveBegun service call asper a
FederateAmbassador : : initiateFeder ateSave request.

This service blocks until al other federates have completed or failed to save their
states, then savestheinterna state of the RTI inthefile RT I xxXx-n.sav where xxx
isthe save label and n isthe federate's federate handle. These files will be located
inthe$RTI_CONFIG directory.

If the federate save was not achieved, the RTI will make an entry to the federate's
RTI log file and proceed as if the save was successful (i.e. the internal state of the
RTI will still be saved.)

Upon return from this method the federate's logical time will continue advancing as
prescribed by the time-advance service in effect at the time of the save.

RETURN VALUES
A non-exceptional return indicates that the RT1 has successfully saved itsinternal
state and will resume advancement of the federate's logical time.

EXCEPTIONS
RTI:: SaveNotlnitiated - There is no currently outstanding request for afederate save

53

RTI 1.0 Programmer’s Guide

or the federate has not indicated the beginning of the save through the
RTlambassador: : feder ateSaveBegun method.

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador ::tick.

RTI::RTlinternalError - An internal error has occurred in the RTI; consult the
federate log file for more details.

SEE AL SO
RTlambassador::requestFederationSave, RTlambassador: : federateSaveBegun,
RTlambassador ::requestRestore, FederateAmbassador::initiateFederateSave

RTI 1.0 Programmer’s Guide

3.1.15 Request Restore

NAME
requestRestore - request that all federates reinitialize themselves based on alabeled
save state

HLA INTERFACE SPECIFICATION SERVICE
2.15 - Federation Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void
RTlambassador::requestRestor e (
const RTI::SavelL abel label

throw
RTI::SpecifiedSavel abelDoesNotEXxist,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

ARGUMENTS
label

null-terminated string that is passed to the resulting invocations of
FederateAmbassador: :initiateRestore. This parameter is not interpreted by
the RTI itself, but is provided as a means for the requesting federate to
specify atextua description of the reason for the restore request or any
other information meaningful in the context of the federation. Thislabel is
also acomponent of the filenamesin which the RTI'sinternal stateis
expected to be saved, so it should match alabel that has previoudly been
used as an argument to a save operation. The federate is responsible for
freeing the storage associated with this string and may do so at itsleisure
upon completion of the call.

DESCRIPTION
This serviceinstructs all federates to restore their state to the state saved under the
specified label. Unlike the counterpart "save' operation, restoration cannot be
scheduled at a specific logical time across all federates; rather, it isinitiated
immediately upon the receipt of an RTlambassador: : requestRestore request (this
makes sense when you consider that the restored logical timeswill override the pre-
restoration values anyways.) It isoften desireable to pause the federation execution
before a state restoration.

Upon receipt of such arequest by a given federate, the federate's
FederateAmbassador: :initiateRestore callback will be invoked to instruct the federate
to immediately begin restoring its state. The RT1 does not define aformat or
provide any facility for federatesto save their externa state, so it isup to the
federate developer to implement the appropriate mechanisms. The RTI is
responsible for restoring itsinternal state and will do so when the federate indicates

55

RTI 1.0 Programmer’s Guide

(using the RTlambassador :: restoreAchieved or
RTlambassador::restoreNotAchieved services) that it has finished restoring its
external state.

Only one restoration request may be outstanding at a given (wallclock) time;
subsequent invocations of RTlambassador :: requestRestore will override previous
requests.

Note that the RTI attempts to restore itsinternal state from thefile
$RTI_CONFIG/RTIxxx-n.sav where xxx istherestore label and nisthe
federate handle. This meansthat federates must join the federation execution in a
consistent order if the restored internal states are to match up with the same
federates.

RETURN VALUES
A non-exceptiona return indicates that the federate has successfully communicated
its desire to restore federation state from alabelled saved state.

EXCEPTIONS
RTI:: SoecifiedSavelabel DoesNotEXist - The file where the RTI expectsto find its
saved internal state does not exist.

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador::tick.

RTI::SavelnProgress - The attempted action would have resulted in achange in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE AL SO

RTlambassador: :requestFederationSave, RTlambassador: :restoreAchieved,
RTlambassador: :restoreNotAchieved, FederateAmbassador::initiateRestore

56

RTI 1.0 Programmer’s Guide

3.1.16 Initiate Restore +

NAME
initiateRestore - instructs the federate to restore its state from alabelled save state

HLA INTERFACE SPECIFICATION SERVICE
2.16 - Federation Management (RTI initiated)

SYNOPSIS
#include <RTI.hh>

virtual

void

FederateAmbassador::initiateRestore (
const RTI::Savel abel label

throw (
RTI::SpecifiedSavel abelDoesNotEXxist,
RTI::CouldNotRestore,
RTI::FederatelnternalError

)

ARGUMENTS
label

null-terminated string that was given as a parameter to the
RTlambassador : : requestRestore service requesting the restoration. This
parameter is not interpreted by the RTI itself, but is provided as ameansfor
the requesting federate to specify atextual description of the reason for the
restore request or any other information meaningful in the context of the
federation. The federate must make a copy of this parameter if it wishesto
retain its value after the completion of the call.

DESCRIPTION
This callback instructs the federate to begin restoring its state immediately. Upon
receipt of such acalback, the federate will be in "restore mode" and will be unable
to utilize most of the RTI ambassador services (with the notable exception of
RTlambassador::tick.)

When the federate has restored its state (or failed in the attempt) it should notify the
RTI of such using the RTlambassador::restoreAchieved or

RTlambassador: :restoreNotAchieved services. At thistime the RTI will attempt to
reinitidlizeitsinterna state from afile whose nameis derived from the federate
handle and specified save label. See the description of the aforementioned services
for more details on this process.

RETURN VALUES
A non-exceptional return value indicates that the federate has acknowledged the
request and will begin restoring its state immediately. An exceptional return vaue
will result in an entry being made to the federate's RTI log file; the federate is still
expected to proceed with the restoration.

EXCEPTIONS
RTI:: SoecifiedSavel abel DoesNotEXxist - The specified save label does not

57

RTI 1.0 Programmer’s Guide

correspond to an existing labelled saved state.

RTI::CouldNotRestore - The federate recognizes the save label but was unable to
restore its state for some other reason.

RTI::FederatelnternalError - An error internal to the federate has occurred; this
exception will result in an entry being made to the federate's RTI log.

SEE AL SO

federateAmbassador ::initiateFederateSave, RTlambassador: :requestRestore,
RTlambassador: : restoreAchieved, RTlambassador :: restoreNotAchieved

58

RTI 1.0 Programmer’s Guide

3.1.17 Restore Achieved

NAME
restoreAchieved, restoreNotAchieved - notify the RTI that the federate has
completed an attempted federate restoration

HLA INTERFACE SPECIFICATION SERVICE
2.17 - Federation Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void
RTlambassador::restoreAchieved ()
throw (
RTI::RestoreNotRequested,
RTI::RTlcanNotRestor e,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::RTlinternalError

)

void
RTlambassador::restoreNotAchieved ()
throw (
RTI::RestoreNotRequested
RTI::RTlcanNotRestor e,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::RTlinternalError

)

DESCRIPTION
These services are invoked by the federate when it has completed (or failed to
complete) a state restoration as per a FederateAmbassador : :initiateRestore request.

Both of these services block until all other federates have restored or failed to
restore their states, then attempts to restore the internal state of the RTI from thefile
RTIxxx-n.sav where xxx isthe save label and n isthe federate's federate handle.
These files should be located in the $RTI_CONFIG directory.

Note that the RTlambassador : : restoreNotAchieved method makes an entry to the
federate's RTI log file and proceeds as though the restoration had succeeded, i.e.
the RTI internal stateisstill restored.

RETURN VALUES
A non-execptiona return indicates that al the federates in the federation have
finished restoring their states and that the internal state of the RTI has been restored.

EXCEPTIONS

RTI::RestoreNotRequested - There is no currently outstanding request for afederate
restoration.

59

RTI 1.0 Programmer’s Guide

RTI::RTIcanNotRestore - The RTI internal state save fileis missing or corrupt.

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador ::tick.

RTI::RTlinternalError - An internal error has occurred in the RTI; consult the
federate log file for more details.

SEE AL SO

RTlambassador ::requestRestore, RTlambassador: : requestFederationSave,
FederateAmbassador ::initiateRestore

60

RTI 1.0 Programmer’s Guide

3.2 Declaration Management

Table 3-24: Declaration Management Services
Section Service Title Service
Implemented

3.1 Publish Object Class Yes

3.2 Publish Interaction Class Yes

3.3 Subscribe Object Class Attribute Y es (No regions)
34 Subscribe Interaction Class Yes (No regions)
3.5 Control Updates t Yes

3.6 Control Interactions T Yes

61

RTI 1.0 Programmer’s Guide

3.2.1 Publish Object Class
NAME

publishObjectClass, unpublishObjectClass - indicate the intention of the federate to
begin (or cease) creating instances and acquiring attributes of a given object class

HLA INTERFACE SPECIFICATION SERVICE
3.1 - Declaration Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void

RTlambassador::publishObjectClass (
RTI::ObjectClassHandle theClass
const RTI::AttributeHandleSet& attributelL ist

throw
RTI::ObjectClassNotDefined,
RTI::AttributeNotDefined,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

void
RTlambassador::unpublishObjectClass (
RTI::ObjectClassHandle theClass

throw
RTI::ObjectClassNotDefined,
RTI::FederateOwnsAttributes,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

ARGUMENTS
theClass
object class that the federate wishes to begin or cease publication of.

attributeHandleSet
set of attributes of the specified object class that the federate intends to own
or update. The caller isresponsible for freeing the storage space used by
the attribute set and may do so at any time after the completion of the call.

DESCRIPTION
RTlambassador : : publishObjectClass indicates to the RTI that the federate is capable
of producing updates for the specified attributes of the specified object class. A

62

RTI 1.0 Programmer’s Guide

federate must be publishing a given object class and attribute to acquire ownership
of instances of that attribute, whether through creation of new objects or acquisition
of existing attribute-instances through ownership management services. The
federate must publish an object class before attempting to register new objects of
that class.

The privilegeToDée ete attribute that isinherently defined for every object classis
implicitly published for any object class published by the federate.

Multiple callsto RTlambassador : : publishObjectClass for the same object class
replace the previously published attribute set for the class (henceforth thisis
referred to as "republishing” the object class.) Publishing an object class does not
imply the publication of subclasses; each specific subclass must also be explicitly
published.

RTlambassador : : unpublishObjectClass removes the specified object class and any
of its subclasses from the set of object classes published by the federate. Any valid
object classisavalid parameter to the RTlambassador : : unpublishObjectClass
method; the object class need not actually be published by the federate. For
example, afederate wishing to unpublish all object classes can do so with one call
to RTlambassador: : unpublishObjectClass with an argument of
ROOT_OBJECT_CLASS HANDLE, the handle of the RTI-defined object class
from which al federation-defined object classes are implicitly defined.

Note that unpublication only affects the acquisition of new attribute-instances; it
does not relieve the federate of update responsibility for any attributes already
owned.

Classes derived from the MOM-defined Manager object class are handled asa
special case by the (un)publication services. All subclasses of Manager are
implicitly published by the MOM manager and must remain published throughout
the lifetime of the federation execution. If the federate attempts to republish a
descendent of Manager with adifferent set of attributes, this set must contain al of
the attributes pre-defined by the MOM (if it doesn't, the object manager will
automatically add these attributes to the new set of published attributes.)
RTlambassador : : unpublishObjectClass will not allow the unpublication of Manager
descendents. Future versions may allow unpublication of non-M OM-defined
attributes; for now this functionality can be achieved by republishing the object
classwith an attribute set consisting of only the predefined attributes.

Upon publication of a given object class, the federate may receive an
FederateAmbassador :: startUpdates callback instructing it to begin updating a set of
attributes of that class. Until the receipt of such a callback, the federate need not
send out any updates of the attributes in question to satisfy its publication
responsibility. 1f no other federates have expressed interest in the published
attributes, this callback will never be made.

A FederateAmbassador: : stopUpdates callback negates the effect of the previous
FederateAmbassador :: startUpdates and can result from unpublication of the object
class or lack of subscription interest among the rest of the federates. In the later
case, the federate may continue updating the attributes in question, but is not
required to do so.

Note that these callbacks do not occur synchronously with respect to the

63

RTI 1.0 Programmer’s Guide

(un)publication service, but rather are scheduled at alater time for delivery viathe
RTlambassador::tick service.

RETURN VALUES
A non-exceptional return from RTlambassador: : publishObjectClass indicates that
the given set of attributes has been published for the object class, possibly replacing
an existing set of published attributes. The federate is then eligible to create objects
of the given object class and to acquire instances of the specified attributes via
ownership management services.

A non-exceptional return from RTlambassador: : unpublishObjectClass indicates that
the object class and all of its descendents have been unpublished, or that the object
classisaderivative of Manager and the unpublication mechanism has silently
refused to unpublish it. The federate may no longer create objects or acquire
attributes of the given object class or any of its subclasses.

EXCEPTIONS
RTI:: AttributeNotDefined - One or more attribute handles in the attribute-handl e set
isnot valid in the context of the specified object class.

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: FederateOwnsAttributes - The federate holds ownership tokens for object
attributes that would be affected by the unpublication request. (not thrown in 1.0)

RTI::ObjectClassNotDefined - The object class handle is not valid in the context of
the current federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador ::tick.

RTI::SavelnProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTlambassador:: publishinteractionClass, RTlambassador::register Object
RTlambassador :: subscribeObjectClassAttribute,
RTlambassador : : updateAttributeValues,
RTlambassador: : requestAttributeOwner shipAcquisition,
FederateAmbassador:: startUpdates, FederateAmbassador::stopUpdates
RTI:: AttributeHandl eSet

RTI 1.0 Programmer’s Guide

3.2.2 Publish Interaction Class
NAME

publishinteractionClass, unpublishinteractionClass -- convey the intention of the
federate to begin (or cease) generating interactions of a given interaction class

HLA INTERFACE SPECIFICATION SERVICE
3.2 - Declaration Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void
RTlambassador ::publishinteractionClass (
RTI::InteractionClassHandle thel nteraction

throw
RTI::InteractionClassNotDefined,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

void
RTlambassador::unpublishlnteractionClass (
RTI::InteractionClassHandle thel nter action

throw
RTI::InteractionClassNotDefined,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

ARGUMENTS
thelnteraction
handle of the interaction classto be (un)published

DESCRIPTION
The FederateAmbassador : : publishl nteractionClass
(FederateAmbassador : : unpublishl nteractionClass) method should be invoked by the
federate when it wishes to notify the RTI that it will begin (end) the generation of
the specified class of interactions. Attempts to generate an interaction whose classis
unpublished will result in an RTI::InteractionClassNotPublished exception.

Publication of an interaction class does not imply the publication of subclasses of
that class; each specific subclass must be explicitly published. On the other hand,
unpublication of an interaction class aso results in the unpublication of any of its
published subclasses. The interaction class specified as the argument to

65

RTI 1.0 Programmer’s Guide

RTlambassador : : unpublishi nteractionClass need not actually be published; a
federate could, for example, unpublish al interactions by unpublishing
ROOT_INTERACTION_CLASS HANDLE, the handle of the RTI-defined
interaction class from which all federation-defined interaction classes areimplicitly
derived.

The federate may receive a FederateAmbassador : : starti nteractionGeneration callback
for apublished interaction class. Until such time, the federate may assume that no
other federates have a subscription interest in the interaction class in question and
that it is not necessary to generate that class of interaction. A

FederateAmbassador : : stopl nteractionGeneration callback, which can result from an
unpublication or cessation of subscription interest, negates the effect of
FederateAmbassador : : tartl nteractionGener ation.

Note that these callbacks do not occur synchronously with respect to the
(un)publication service, but rather are scheduled at alater time for ddlivery viathe
RTlambassador::tick service.

RETURN VALUES
A non-exceptional return from RTlambassador: : publishinteractionClass indicates
that the specified interaction class has been added to the set of interactions published
by the federate; the federate may begin generating interactions of this class.

A non-exceptional return from RTlambassador: : unpublishinteractionClass indicates
that the specified interaction class and al of its descendents have been removed
from the set of interactions published by the federate; the federate may no longer
generate interactions of these classes.

EXCEPTIONS
RTI::InteractionClassNotDefined - The specified interaction class handleis not valid
within the context of the current federation execution.

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador ::tick.

RTI::SavelnProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTlambassador :: publishObjectClass, RTlambassador:: sendinteraction,
FederateAmbassador : : subscribel nteractionClass,
FederateAmbassador: : startl nteractionGeneration,
FederateAmbassador : : stopl nteractionGeneration

66

RTI 1.0 Programmer’s Guide

3.2.3 Subscribe Object Class Attribute
NAME

subscribeObjectClassAttribute, unsubscribeObjectClassAttribute - declare or
withdraw federate interest in receiving updates for a set of attributes

HLA INTERFACE SPECIFICATION SERVICE
3.3 - Declaration Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void

RTIlambassador ::subscribeObjectClassAttribute (
RTI::ObjectClassHandle theClass
const RTI::AttributeHandleSet& attributelL ist

throw
RTI::ObjectClassNotDefined,
RTI::AttributeNotDefined,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

void
RTlambassador::unsubscribeObjectClassAttribute (
RTI::0bjectClassHandle theClass

throw
RTI::ObjectClassNotDefined,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

Variants supporting subscription regions are not implemented in 1.0:

void

RTIlambassador ::subscribeObjectClassAttribute (
RTI::ObjectClassHandle theClass
RTI::AttributeHandle theAttribute
RTI::Region theRegion

throw (
RTI::ObjectClassNotDefined,
RTI::AttributeNotDefined,
RTI::RegionNotK nown,
RTI::FederateNotExecutionM ember,

67

RTI 1.0 Programmer’s Guide

RTI::ConcurrentAccessAttempted,
RTI::RTlinternalError,
RTI::UnimplementedService

)

void
RTlambassador::unsubscribeObjectClassAttribute (
RTI::ObjectClassHandle theClass
RTI::Region theRegion

throw
RTI::ObjectClassNotDefined,
RTI::RegionNotK nown,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::RTlinternalError,
RTI::UnimplementedService

)
ARGUMENTS
theClass
class handle of the object class whose subscription status will be affected by
the call
attributel ist
of attributes of the object classto subscribeto. The caller isresponsible for
freeing the storage associated with thislist and may do so at any time after
the completion of the call.
DESCRIPTION

These two methods are used by the federate to manipulate the types of dataiit
wishes to have presented to the federate ambassador.

All examplesin this section refer to the following class hierarchy (transport and
ordering policies not shown):

(class Beverage (attribute Volume) (attribute Price) (class
CarbonatedBeverage (attribute Carbonation) (class Soda
(attribute Caffeine) (attribute BrandName))))

Subscription to an object class does not imply subscription to any subclasses of that
object class, however, instances of non-subscribed subclasses will be promoted to
the most specific subscribed object class for discovery by the federate ambassador.
In doing so, the object manager filters out attributes that are not valid in the context
of the discovered object class. For example, if afederate subscribesto all attributes
of class CarbonatedBeverage and another federate creates an instance of Soda, this
instance will be discovered as a CarbonatedBeverage, and the soda-specific
attributes (Caffeine and BrandName) will be filtered out of the set of attributes
presented to FederateAmbassador : : reflectAttributeValues. Attribute subscriptions
are not cumulative with respect to class hierarchies, for example, if afederate
subscribes to object class CarbonatedBeverage with attributes Carbonation and
Volume and object class Beverage with attributes Volume and Price, attribute
updates for CarbonatedBeverage will not present the Price attribute to the federate
ambassador, asit only uses the attribute subscription set for the most-specific

68

RTI 1.0 Programmer’s Guide

subscribed object class.

If RTlambassador :: subscribeObjectClassAttribute is invoked with an object class
that is aready subscribed, the new attribute set replaces the existing subscribed
attribute set. Subscription does not affect objects that have already been discovered
by the federate ambassador; for example, if afederate initially subscribesto only
Beverage but later subscribesto Soda, Soda instances that have previously been
discovered asBeverage will not be rediscovered as the more specific object class.

Objects will not be discovered by the federate ambassador until an attribute update
isreceived following the subscription of arelevant object class. Federates may
wish to utilize the RTlambassador : : requestObjectAttributeValueUpdate service to
explicitly request an attribute update for pre-existing objects, especidly if the
attributes in question are only updated sporadically.

RTlambassador : : unsubscribeObjectClassAttribute removes the specified object
class and any of its subclasses from the set of object classes that will be presented
to the federate ambassador. The specified object class need not actualy be
subscribed by the federate; for example, the federate may wish to unsubscribe all
object classes by unsubscribing ROOT_OBJECT_CLASS HANDLE, the handle
of the RTI-defined object class from which all federation-defined object classes are
implicitly derived.

Removal of an object class from the subscription set results in the removal of al
instances of that class from the set of objects known to the federate ambassador.
The federate ambassador will be informed of such through invocations of the
"FederateAmbassador::removeObject” method (this notification is not delivered
synchronously with respect to the unpublication method, but is queued up for later
processing by the "RTlambassador::tick" service.) If the federate holds any
attribute ownership tokens for objects removed from the federate ambassador, the
object manager will automatically resolve ownership of these tokens; seethe
discussion of RELEASE_ATTRIBUTES in the

RTlambassador : : resignFeder ationExecution documentation for adetailed
description of this process.

Object classes derived from the Management Object Model (MOM)-defined
Manager class are not treated as a special case asthey are by the publication
services.

RETURN VALUES
A non-exceptional return from RTlambassador : : subscribeObjectClassAttribute
indicates that the federate has subscribed to the given object class and attribute set,
replacing the existing attribute subscription set, if any. Future attribute updates of
the subscribed attributes will be presented to the federate ambassador viathe
FederateAmbassador : : refl ectAttributeValues method.

A non-exceptional return from RTlambassador: : unsubscribeObjectClassAttribute
indicates that the given object class and any of its subclasses has been removed
from the set of subscribed classes. All discovered instances of the affected classes
have been queued for deletion from the set of objects known by the federate
ambassador, and updates for the affected attributes will no longer be presented to
the federate ambassador viathe FederateAmbassador: : reflectAttributeVal ues
method. The object manager will attempt to divest attribute ownership tokens of
any removed objects "behind the scenes’.

69

RTI 1.0 Programmer’s Guide

EXCEPTIONS
RTI:: ObjectClassNotDefined - The specified object class handle is not valid within
the context of the current federation execution.

RTI:: AttributeNotDefined - One or more of the specified attribute handles is not
valid within the context of the specified object class.

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador ::tick.

RTI::SavelnProgress - The attempted action would have resulted in achange in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTlambassador :: publishObjectClass, FederateAmbassador :: discover Object,
FederateAmbassador : :removeObject, FederateAmbassador : : refl ectAttributeVal ues,
RTlambassador: : subscribel nteractionClass,
RTlambassador: :requestObjectAttributeValueUpdate, RTI:: AttributeHandleSet

70

RTI 1.0 Programmer’s Guide

3.2.4 Subscribe Interaction Class

NAME
subscribel nteractionClass, unsubscribel nteractionClass - declare or withdraw
federate interest in receiving agiven class of interactions

HLA INTERFACE SPECIFICATION SERVICE
3.4 - Declaration Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void
RTlambassador::subscribel nteractionClass (
RTI::InteractionClassHandle theClass

throw
RTI::InteractionClassNotDefined,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::FederatelL oggingServiceCalls,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

void
RTlambassador::unsubscribel nteractionClass (
RTI::InteractionClassHandle theClass

throw
RTI::InteractionClassNotDefined,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)
Variants supporting subscription regions are not implemented in 1.0:

void

RTlambassador::subscribel nteractionClass (
RTI::InteractionClassHandle theClass
RTI::Region theRegion

throw
RTI::InteractionClassNotDefined,
RTI::RegionNotK nown,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::RTlinternalError,
RTI::UnimplementedService

71

RTI 1.0 Programmer’s Guide

)

void

RTlambassador::unsubscribel nteractionClass (
RTI::InteractionClassHandle theClass
Region theRegion

throw
RTI::InteractionClassNotDefined,
RTI::RegionNotK nown,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::RTlinternalError,
RTI::UnimplementedService

)

ARGUMENTS
theClass
interaction class handle of the interaction class whose subscription status
will be affected by the call

DESCRIPTION
These two methods are used by the federate to manipulate the set of interaction
classes whose instances will be presented to the federate viathe
FederateAmbassador .

Subscription to an interaction class does not imply subscription to any subclasses of
that interaction class; however, instances of non-subscribed subclasses will be
promoted to the most specific subscribed interaction class for presentation to the
federate ambassador. For example, if afederate subscribes to interaction class Foo
but not its subclass Bar, the interaction manager will promote incoming Bar
interactionsto Foo for presentation to FederateAmbassador: : receivel nteraction; this
includesthefiltering out of parameters that are specific to class Bar.

Unlike object attributes, it is not possible to subscribe to a subset of interaction
parameters; subscription to an interaction class implies subscription to every
parameter of that interaction class.

Unsubscription of an interaction class also unsubscribes any subclasses of the
interaction class. The specified interaction class need not actually be subscribed by
the federate; for example, the federate may wish to unsubscribe al interaction
classes by calling RTlambassador : : unsubscribel nteractionClass with an argument
of ROOT_INTERACTION_CLASS HANDLE, the handle of the RTI-defined
interaction class from which al federation-defined interaction classes areimplicitly
defined.

RETURN VALUES
A non-exceptional return from RTlambassador : : subscribel nteractionClass indicates
a successful subscription to the specified interaction class; future receipts of
instances of the interaction class or any of its subclasses will be presented to the
FederateAmbassador : :receivel nteraction method (after any necessary class
promotion and parameter filtering is done.)

A non-exceptional return from RTlambassador: : unsubscribel nteractionClass

72

RTI 1.0 Programmer’s Guide

indicates a successful unsubscription of the specified interaction class and al of its
subclasses; future receipts of instances of the affected interaction classes will not be
presented to the federate ambassador.

EXCEPTIONS
RTI:: InteractionClassNotDefined - The interaction class handle is not valid within
the context of the current federation execution.

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador ::tick.

RTI::SavelnProgress - The attempted action would have resulted in achange in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTlambassador :: publishinteractionClass, FederateAmbassador: : receivel nteraction,
RTlambassador :: subscribeObjectClassAttribute,
FederateAmbassador :: startl nteractionGeneration,
FederateAmbassador : : stopl nteractionGeneration

73

RTI 1.0 Programmer’s Guide

3.2.5 Control Updates +

NAME
sartUpdates, stopUpdates- informs the federate that it should begin (or cease)
updating agiven set of attributes of agiven class

HLA INTERFACE SPECIFICATION SERVICE
3.5 - Declaration Management (RTI initiated)

SYNOPSIS
virtual
void
FederateAmbassador::startUpdates (
RTI::ObjectClassHandle theClass
const RTI::AttributeHandleSet& theAttributes

throw (
RTI::ObjectClassNotPublished,
RTI::AttributeNotPublished,
RTI::Federatel nternalError

)

virtual

void

FederateAmbassador::stopUpdates (
RTI::ObjectClassHandle theClass
const RTI::AttributeHandleSet& theAttributes

throw (
RTI::ObjectClassNotPublished,
RTI::AttributeNotPublished,
RTI::Federatel nternalError

)

ARGUMENTS
theClass
class whose attributes the federate should begin (or cease) updating.

theAttributes
set of attributes of the given class that the federate should begin (or cease)
updating. The caller maintains ownership of the storage space associated
with this set; the federate ambassador should make a copy if it wishesto
retain this information after completion of the call.

DESCRIPTION
RTI invokes this callback to notify the federate that it should (or should not)
generate updates of the specified set of attributes of the specified class. Sucha
notification applys only the specific object class given and is not intended to affect
the update-generation status of any subclasses; if RTI wishes the federate to begin
or cease update generation of a hierarchy of classesit will issue an explicit
notification for each classin the hierarchy.

The federate will receive a FederateAmbassador :: startUpdates notification when it

RTI 1.0 Programmer’s Guide

has published an attribute for which one or more other federates have declared a
subscription interest. The FederateAmbassador :: stopUpdates notification is issued
when one of these conditions fails to hold, i.e. the federate has unpublished the
attribute or all other federates have withdrawn their subscription interests.

The federate may till update any published attributes for which it has not received a
FederateAmbassador : : startUpdates notification; these callbacks should be seen
merely as suggestions.

RETURN VALUES
A non-exceptional return from FederateAmbassador :: startUpdates
(FederateAmbassador: : stopUpdates) indicates that the federate recognizes the object
and has acknowledged the request to begin (cease) updating the specified set of
attributes.

Exceptions thrown from these methods will cause any entry to be made in the
federate's RTI log and otherwise ignored.

EXCEPTIONS
RTI:: ObjectClassNotPublished - The object class handle is not recognized or the
object classis not published by the federate.

RTI:: AttributeNotPublished - One or more of the attribute handles is not recognized
or the attribute is not published by the federate.

RTI::FederatelnternalError - An error interna to the federate has occurred; this
exception will result in an entry being made to the federate's RTI log.

SEE AL SO

FederateAmbassador: : startl nter actionGeneration,
RTlambassador : : publishObjectClass

75

RTI 1.0 Programmer’s Guide

3.2.6 Control Interactions +

NAME
dartlnteractionGeneration, stoplnteractionGeneration - informs the federate that is
should begin (or cease) the generation of a specified class of interaction

HLA INTERFACE SPECIFICATION SERVICE
3.6 - Declaration Management (RTI initiated)

SYNOPSIS
virtual
void
FederateAmbassador ::startlnteractionGeneration (
RTI::InteractionClassHandle theHandle

throw (
RTI::InteractionClassNotPublished,
RTI::Federatel nternalError

)

virtual

void

FederateAmbassador::stoplnteractionGeneration (
RTI::InteractionClassHandle theHandle

throw (
RTI::InteractionClassNotPublished,
RTI::Federatel nternalError

)

ARGUMENTS
theHandle
class of interactions the federate should begin (or cease) the generation of .

DESCRIPTION
RTI invokes this callback to notify the federate that it should (or should not)
generate interactions of the specified class. Such anotification applys only the
specific interaction class given and is not intended to affect the update-generation
status of any subclasses; if RTI wishes the federate to begin or cease update
generation of ahierarchy of classesit will send an explicit notification for each class
in the hierarchy.

The federate will receive a FederateAmbassador : : startl nteractionGeneration
notification when it has published an interaction class for which one or more other
federates have declared a subscription interest. The

Feder ateAmbassador : : stopl nteractionGeneration notification is issued when one of
these conditions fails to hold, i.e. the federate has unpublished the interaction class
or all other federates have withdrawn their subscription interests.

The federate may still generate interactions of any published class for which it has

not recelved a FederateAmbassador : : sartlnteractionGeneration notification; these
callbacks should be seen merely as suggestions.

76

RTI 1.0 Programmer’s Guide

RETURN VALUES
A non-exceptional return indicates that the federate recognizes the interaction class
handle and will begin (or cease) the generation of the specified interaction class.

Exceptions thrown from this method will be entered into the federate's RTI log and
ignored.

EXCEPTIONS
RTI::InteractionClassHandle - The interaction class handleis not recognized or the
interaction classis not published by the federate.

RTI::FederatelnternalError - An error interna to the federate has occurred; this
exception will result in an entry being made to the federate's RTI log.

SEE ALSO
FederateAmbassador :: startUpdates, RTlambassador:: publishinteractionClass

77

RTI 1.0 Programmer’s Guide

3.3 Object Management

Table 3-25: Object Management Services

Section Service Title Service
| mplemented
4.1 Request ID Yes
4.2 Register Object Yes
4.3 Update Attribute Vaues Yes
4.4 Discover Object T Yes
4.5 Reflect Attribute Values T Yes
4.6 Send Interaction Yes
4.7 Receive Interaction t Yes
4.8 Delete Object Yes
4.9 Remove Object T Yes
4.10 Change Attribute Transportation Type Yes
411 Change Attribute Order Type Yes
4,12 Change Interaction Transportation Type Yes
4,13 Change Interaction Order Type Yes
4.14 Reqguest Attribute Value Update Yes
4.15 Provide Attribute Vaue Updatet Yes
4.16 Retract Yes
4.17 Reflect Retraction T Yes

78

RTI 1.0 Programmer’s Guide

3.3.1 Request ID

NAME
requestiD - obtain arange of unique IDsfor use in registering objects with the
federation

HLA INTERFACE SPECIFICATION SERVICE
4.1 - Object Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void

RTlambassador::requestiD (
RTI::Objectl Dcount idCount
RTI::ObjectI D& firstID
RTI::ObjectID& lastID

)

throw
RTI::TooManyl DsRequested,
RTI::IDsupplyExhausted,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

ARGUMENTS
idCount
number of IDsto reserve

firstiD
thefirst ID in the range of reserved IDs

lastiD

thelast ID in the range of reserved IDs

DESCRIPTION
The federate invokes this method to obtain a set of unique object IDs that may be
used in subsequent callsto RTlambassador::registerObject. These IDs are taken
from the set of unique IDs that is assigned to every federate in afederation
execution; thus object I Ds are unique within the federate and within the federation
execution at a given time (although the same object ID may be used by different
federates at mutually exclusive times throughout a given federation execution.) 1Ds
are not recycled upon the deletion of their associated object.

The number of unique IDs available to afederate is configurable viathe
MAX_OBJECTS PER FEDERATE entry inthe $RTI_CONFIG/RTI.rid file.

RETURN VALUES

Upon a non-exceptional completion, firstID and lastiD define the endpoints of an
inclusive range of object IDsthat may be used by the federate for the registration of

79

RTI 1.0 Programmer’s Guide

new federation objects.

WINDOWS NT NOTES
On Windows NT, the path of the RTI configuration fileis %RTI_CONFIG%.rid.

EXCEPTIONS
RTI:: TooManyl DsRequested - The request cannot be granted with asingle
continuous range of object 1Ds; try breaking the request up into multiple smaller
requests. (Not thrown in RTI 1.0.)

RTI::1DsupplyExhausted - The federate has exhausted its supply of unique object
IDs.

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador ::tick.

RTI::SavelnProgress - The attempted action would have resulted in achange in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTlambassador :: register Object

80

RTI 1.0 Programmer’s Guide

3.3.2 Register Object

NAME
registerObject - associate an object class with an object ID to create a new object in
the federation execution

HLA INTERFACE SPECIFICATION SERVICE
4.2 - Object Management (federate initiated)

SYNOPSIS
void
RTlambassador::register Object (
RTI::ObjectClassHandle theClass
RTI::ObjectI D theObject

throw
RTI::ObjectClassNotDefined,
RTI::ObjectClassNotPublished,
RTI::InvalidObjectI D,
RTI::ObjectAlreadyRegistered,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

ARGUMENTS
theClass
object classto associate with the specified object ID (this class must be
published by the federate.)

theObject
object ID to associate with the specified class (should have been previously
obtained viaacall to RTlambassador::requestiD.)

DESCRIPTION
This service associates the specified object class with the specified object ID,
effectively creating a new object within the federation. Ownership tokens for
attributes being published by the federate will beinitially owned by the federate; any
other ownership tokens will be initially unowned (specifically, they are tracked by
the RTI internally in the process registering the object) and are available for
acquigition by any federate. Theinitia transportation mechanism and update
ordering policy for agiven attribute are set to the values defined in the FOM file
($RTI_CONFIG/[federation name] .fed.) RTlambassador::registerObject does not
notify the federation of the existence of the newly created object; the object will not
be discovered by other federates until an attribute update notification is sent out.

RETURN VALUES
A non-exceptional return indicates that the object has been successfully registered
with RTI and the federate may begin generating updates for the attributes it
publishes.

81

RTI 1.0 Programmer’s Guide

WINDOWS NT NOTES
On Windows NT, the path of the FOM fileis %RTlI_CONFIG%federation] .fed.

=headl EXCEPTIONS

RTI::ObjectClassNotDefined - The object class handle is not valid in the context of
the current federation execution.

RTI:: ObjectClassNotPublished - The specified object classis not published by the
federate.

RTI::InvalidObjectID - The specified object ID has not been reserved for use by the
federate.

RTI:: ObjectAlreadyRegistered - An object has aready been registered with the
specified object ID.

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador ::tick.

RTI::SavelnProgress - The attempted action would have resulted in achange in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTlambassador::requestiD, RTlambassador:: publishObjectClass,
RTlambassador :: updateAttributeValues, RTlambassador::deleteObject,
RTlambassador : : changeAttributeTransportType,
RTlambassador : : changeAttributeOrder Type, FederateAmbassador: : discover Object

82

RTI 1.0 Programmer’s Guide

3.3.3 Update Attribute Values

NAME
updateAttributeValues - notify the federation of a change in value of one or more
attributes of an object

HLA INTERFACE SPECIFICATION SERVICE
4.3 - Object Management (federate initiated)

SYNOPSIS
RTI::EventRetractionHandle
RTlambassador::updateAttributeValues (
RTI::ObjectI D theObject
const RTI::AttributeHandleValuePair Set& theAttributes
RTI::FederationTime theTime
const RTI::UserSuppliedTag theTag

throw
RTI::ObjectNotK nown,
RTI::AttributeNotDefined,
RTI::AttributeNotOwned,
RTI::InvalidFederationTime,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

ARGUMENTS

theObject
object ID of the instance whose attributes are being updated.

theAttributes
set of handles of the attributes being updated and their associated values.
The caller isresponsible for freeing the storage space associated with this
set and may do so at itsleisure.

theTime
federation time at which the new attribute values should take effect.

theTag
string value that is passed to the invocations

FederateAmbassador : : refl ectAttributeValues on the remote federates; this
may contain atextual description of what caused the change in state or any
other datathat is meaningful for aparticular federation. Thecaler is
responsible for freeing the storage associated with this string and may do so
at itsleisure.

DESCRIPTION
This method notifies the other federates in the federation execution of achangein
the specified attribute values of the specified object. This may result in one or more
invocations of FederateAmbassador: : reflectAttributeVal ues on one or more remote

83

RTI 1.0 Programmer’s Guide

federates (after any class promotion and attribute filtering necessary to meet agiven
federate's subscription criteriais done.)

The transportation mechanism and ordering policy used for agiven attribute are
defined by the federate's FED file ($RTI_CONFIG/[federation name] .fed) or may
be specified dynamically on a per-instance basis using

RTlambassador : : changeAttributeTransportType and

RTlambassador : : changeAttributeOrder Type (keep in mind that the attribute-specific
ordering policy isonly considered if the federate istime regulating, otherwise all
attribute updates are sent receive-ordered.) Attributes with different transportation
mechanisms and/or ordering policies may be grouped together in asingle
RTlambassador : : updateAttributeVal ues invocation; the object manager will send out
various subsets of the specified attributes in physically separate updates as
necessary.

The federate must hold the ownership tokens for any attributes it attempts to update
(and therefore must also be publishing the attributes.)

RETURN VALUE
The RTI:: EventRetractionHandl e returned may be used as the argument to
RTlambassador::retract to withdraw the update notification.

EXCEPTIONS
RTI:: ObjectNotKnown - The specified object ID is not valid within the current
federation execution or is not known to the federate.

RTI:: AttributeNotDefined - One or more of the specified attributesis not valid in the
context of the specified object (valid attributes are still sent out before this exception
israised.)

RTI:: AttributeNotOwned - The federate does not hold the ownership token for one
or more of the specified attributes (valid attributes are still sent out before this
exceptionisraised.)

RTI::InvalidFederationTime - The time value specified isnot alega timefor atime-
stamp-ordered update to be posted by the federate, i.e. it isless than the federate's
logical time plusits lookahead. (Not thrown in 1.0.)

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador::tick.

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::SavelnProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

RTI 1.0 Programmer’s Guide

SEE AL SO
FederateAmbassador : : refl ectAttributeValues, RTlambassador: : publishObjectClass,
RTlambassador: : queryAttributeOwner ship,
RTlambassador : : changeAttributeTransportType,
RTlambassador : : changeAttributeOrder Type, RTlambassador::register Object,
FederateAmbassador : : discover Object, RTlambassador ::turnRegulationOn,
RTI:: AttributeHandleValuePair Set, RTlambassador::tick RTlambassador::retract

85

RTI 1.0 Programmer’s Guide

3.3.4 Discover Object +

NAME
discover Object - inform the federate of the existence of an object in the federation

HLA INTERFACE SPECIFICATION SERVICE
4.4 - Object Management (RTI initiated)

SYNOPSIS

virtual

void

FederateAmbassador ::discover Object (
RTI::ObjectI D theObject
RTI::ObjectClassHandle theObjectClass
RTI::FederationTimetheTime
const RTI::UserSuppliedTag theTag
RTI::EventRetractionHandle theHandle

throw (
RTI::CouldNotDiscover,
RTI::ObjectClassNotK nown,
RTI::InvalidFederationTime,
RTI::Federatel nternalError

)

ARGUMENTS

theObject
object ID of the object being discovered.

theObjectClass
discovered class of the object (this may differ from its actual class -- see
below.)

theTime
time at which the object is discovered (not necessarily the time at which the
object was created.)

theTag
string value that was passed to the RTlambassador : : updateAttributeValues

that triggered the object discovery. This may contain atextual description of
the reason for the attribute update, or any other data that is meaningful for a
particular federation. The caller maintains ownership of the storage
associated with this string; the federate ambassador should make a copy if it
wishes to retain this information after the completion of the call.

theHandle
event handle that may later be used to retract the discovery of this object.

DESCRIPTION
This method isinvoked to inform the federate of a newly discovered object that
meets the federate's subscription criteria. This occurs upon the receipt of an
attribute update for an object that has not previoudy been discovered by the
federate; there is no notification of new objects that have been registered using

86

RTI 1.0 Programmer’s Guide

RTlambassador:: register Object but have not been updated. Discoveries dways
immediately precede a FederateAmbassador :: reflectAttributeValues for the
discovered object (no intervening RTlambassador::tick is required); an object is
discovered exactly when one or more of its attribute updates becomes dligible for
presentation to the federate (see RTlambassador : : refl ectAttributeVal ues and
RTlambassador ::tick for a more thorough discussion of when this occurs.)

If the actual class of an object is a subclass of an object class subscribed by the
federate, the object is promoted to the subscribed class for discovery by the
federate. For example, if afederate subscribesto class Foo but not its subclass
Bar, instances of class Bar will be discovered as Foo by the federate.

Only objects that have been discovered by afederate are eligible for updates via
invocations of FederateAmbassador: : refl ectAttributeVal ues.

RETURN VALUES
A non-exceptional return indicates that the federate understands the discovery
notification.

An exceptiona return will cause an error message to be written to the federate's RTI
log file; the object will still be considered discovered and subject to future update
notifications.

EXCEPTIONS
RTI::CouldNotDiscover - The federate could not discover the specified object (it's
not particularly clear when this should be thrown.)

RTI:: ObjectClassNotKnown - The objet class handleis not valid in the context of
the current federation execution or is not subscribed by the federate.

RTI::InvalidFederationTime - The federation timeis not valid, i.e. atime-stamped
order update has been delivered to atime-constrained federation in the federate's
past. (In 1.0 there's no way for the federate to tell whether the discovery isthe
result of atime-stamp ordered update, so it's unclear when this exception should be
raised.)

RTI::FederatelnternalError - An error internal to the federate has occurred.

SEE ALSO
RTlambassador ::register Object RTlambassador: : subscribeObjectClass,
RTlambassador : : updateAttributeValues,
FederateAmbassador ::reflectAttributeValues, FederateAmbassador::reflectRetration,
FederateAmbassador : : removeObject

87

RTI 1.0 Programmer’s Guide

3.3.5 Reflect Attribute Values +

NAME
reflectAttributeValues - inform the federate of a change in one or more attribute
values of a previoudy-discovered object in the federation

HLA INTERFACE SPECIFICATION SERVICE
4.5 - Object Management (RTI initiated)

SYNOPSIS

virtual

void

FederateAmbassador::reflectAttributeValues (
RTI::ObjectI D theObject
const RTI::AttributeHandleValuePair Set& theAttributes
RTI::FederationTime theTime
const RTI::UserSuppliedTag theTag
RTI::EventRetractionHandle theHandle

throw (
RTI::ObjectNotK nown,
RTI::AttributeNotK nown,
RTI::InvalidFederationTime,
RTI::Federatel nternalError

)

ARGUMENTS

theObject
object whose attributes are being updated.

theAttributes
set of attributes being updated and their corresponding new values. The
caller maintains ownership of the storage associated with this set; the
federate ambassador should make a copy if it wishesto retain this
information after the completion of the call.

theTime
time at which the updated values are effective.

theTag
string value that was passed to the invocation of

RTlambassador :: updateAttributeValues that triggered this reflection. This
may contain atextual description of the reason for the attribute update, or
any other datathat is meaningful for a particular federation. The caller
maintains ownership of the storage associated with this string; the federate
ambassador should make a copy if it wishesto retain thisinformation after
the completion of the call.

theHandle
event handle that may later be used to retract the specified update.

DESCRIPTION
This callback isinvoked to inform the federate that the given set of attributes have

88

RTI 1.0 Programmer’s Guide

changed values, effective at the specified time. This occurs asaresult of acall to
RTlambassador : : updateAttributeVal ues made by aremote federate (a single update
may cause more than one reflection per federate, possibly at different physical and
logical times, if the attributes updated differ in transport mechanisms or ordering
policies.)

If the federate is time-constrained, attribute updates designated by the sender as
time-stamp-ordered are not presented to the federate until it has requested to
advanceitslogical timeto atime equal to or beyond the time-stamp of the update
and it can be guaranteed that no time-stamp-ordered updates or interactions with a
lower time-stamp will be received, i.e. the federation's lower-bound time stamp is
greater than or equal to the update'stime-stamp. Time-stamp-ordered updates and
interactions are presented to the federate in strictly non-decreasing time order
(although delivery of messages with the same time-stamp occurs in non-
deterministic order.)

If the federate is not time-constrained, updates and interactions are presented to the
federate in the order in which they are received, regardless of their time-stamp and
ordering policies.

RETURN VALUES
A non-exceptiona return indicates that the federate understands the attribute update
notification.

An exceptiona return will cause an error message to be written to the federate's RTI
log file; the attribute values are still considered to have been reflected.

EXCEPTIONS
RTI:: ObjectNotKnown - The object ID is has not previously been discovered by the
federate.

RTI:: AttributeNotKnown - One or more attribute handles are not valid in the context
of the current federation execution or the attributes are not subscribed by the
federate.

RTI::InvalidFederationTime - The federation timeis not valid, i.e. atime-stamped-
ordered update has been delivered to atime-constrained federation in the federate's
past. (In 1.0 there'sno way for the federate to tell whether the reflection isthe
result of atime-stamp-ordered update, so it's unclear when this exception should be
raised.)

RTI::FederatelnternalError - An error interna to the federate has occurred.

SEE ALSO
RTlambassador :: updateAttributeValues, RTlambassador:: setTimeConstrained,
RTlambassador :: subscribeObjectClass, FederateAmbassador: : discover Object,
RTI:: AttributeHandleValuePair Set, FederateAmbassador::reflectRetration,
RTlambassador: : timeAdvanceRequest, FederateAmbassador: : receivel nteraction

89

RTI 1.0 Programmer’s Guide

3.3.6 Send Interaction

NAME
sendlnteraction - notify the federation of an action taken by an object, possibly
directed towards another object

HLA INTERFACE SPECIFICATION SERVICE
4.6 - Object Management (federate initiated)

SYNOPSIS
RTI::EventRetractionHandle
RTlambassador ::sendlnteraction (
RTI::InteractionClassHandle thel nteraction
const RTI::ParameterHandleValuePair Set& theParameters
RTI::FederationTime theTime
const RTI::UserSuppliedTag theTag

throw (
RTI::InteractionClassNotDefined,
RTI::InteractionClassNotPublished,
RTI::InteractionParameter NotDefined,
RTI::InvalidFederationTime,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

ARGUMENTS
thelnteraction
class of interaction to send to the federation (must be a class published by
the federate.)

theParameters
set handles of the parameters being updated and their associated values.
The caller isresponsible for freeing the storage space associated with this
set and may do so at itsleisure.

theTime
federation time at which the interaction occurs.

theTag
string value that is passed to the invocations

FederateAmbassador : :receivel nteraction on the remote federates; this make
contain atextual description of the interaction, or any other datathat is
meaningful for aparticular federation. The caller isresponsible for freeing
the storage associated with this string and may do so at itsleisure.

DESCRIPTION
This service dlows the federate to notify the federation of an action taken by some
object in the federation or any other change in federate state that cannot be
communicated via attribute value updates. This may result in asingle invocation of

90

RTI 1.0 Programmer’s Guide

FederateAmbassador : :receivel nteraction on one or more remote federates (after any
class promotion and parameter filtering necessary to meet a given federate's
subscription criteriais done.)

The transportation mechanism and ordering policy used for the interaction are
defined by the federate's FED file ($RTI_CONFIG/[federation name] .fed) or may
be specified dynamically using RTlambassador: : changel nteractionTransportType
and RTlambassador : : changel nteractionOrder Type (keep in mind that the interaction
class-specific ordering policy isonly considered if the federate istime regulating,
otherwise al interactions are sent receive-ordered.)

RETURN VALUES
The RTI:: EventRetractionHandl e returned may be used as the argument to
RTlambassador::retract to withdraw the interaction.

EXCEPTIONS
RTI::InteractionClassNotDefined - The specified interaction class handleis not valid
in the context of the current federation execution.

RTI::InteractionClassNotPublished - The specified interaction classis not currently
published by the federate.

RTI::InteractionParameter NotDefined - One or more of the specified interaction
parameter handles are not valid in the context of the specified interaction class.

RTI::InvalidFederationTime - The time value specified isnot alega timefor atime-
stamp-ordered update to be posted by the federate, i.e. it isless than the federate's
logical time plusitslookahead. (Not thrownin 1.0.)

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador ::tick.

RTI::SavelnProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
FederateAmbassador : : receivel nteraction, RTlambassador :: publishinteractionClass,
RTlambassador : : changel nteractionTransportType,
RTlambassador: : changel nteractionOrder Type, RTlambassador: : turnRegulationOn,
RTI::ParameterHandleValuePair Sst, RTlambassador::tick RTlambassador: :retract

91

RTI 1.0 Programmer’s Guide

3.3.7 Receive Interaction +

NAME
recelvel nteraction - inform the federate of an interaction generated by another
federate in the federation execution

HLA INTERFACE SPECIFICATION SERVICE
4.7 - Object Management (RTI initiated)

SYNOPSIS

virtual

void

FederateAmbassador::receivel nteraction (
RTI::InteractionClassHandle thelnteraction
const RTI::ParameterHandleValuePair Set& theParameters
RTI::FederationTime theTime
const RTI::UserSuppliedTag theTag
RTI::EventRetractionHandle theHandle

throw (
RTI::InteractionClassNotK nown,
RTI::InteractionParameter NotK nown,
RTI::InvalidFederationTime,
RTI::Federatel nternalError

)
ARGUMENTS

thelnteraction
class of the interaction (must be a class subscribed by the federate or a
subclass of a subscribed class.)

theParameters
set of parameters for thisinteraction and their associated values. The caller
maintains ownership of the storage associated with this set; the federate
ambassador should make a copy if it wishesto retain thisinformation after
the completion of the call.

theTime
time at which the interaction occurs.

theTag
string value that was passed to the invocation of
RTlambassador:: sendinteraction that triggered this reflection. This may
contain atextual description of the interaction, or any other datathat is
meaningful for a particular federation. The caller maintains ownership of
the storage associated with this string; the federate ambassador should make
acopy if it wishesto retain thisinformation after the completion of the call.

theHandle

event handle that may later be used to retract the specified interaction.

DESCRIPTION
This callback isinvoked to inform the federate of an interaction generated by

92

RTI 1.0 Programmer’s Guide

another federate in the federation execution via RTlambassador : : sendl nteraction.
Federates are only notified of interactions that meet their subscription criteria, as
defined by RTlambassador: : (un)subscribel nteractionClass.

If the federate is time-constrained, interactions designated by the sender astime-
stamp-ordered are not presented to the federate until it has requested to advance its
logical time past the time-stamp of the interaction and it can be guaranteed that no
time-stamp-ordered updates or interactions with alower time-stamp will be
received, i.e. the federation's lower-bound time stamp is greater than or equal to the
update's time-stamp. Time-stamp-ordered updates and interactions are presented to
the federate in strictly non-decreasing time order (although delivery of messages
with the same time-stamp occurs in non-deterministic order.)

If the federate is not time-constrained, updates and interactions are presented to the
federate in the order in which they are received, regardless of their time-stamp and
ordering policies.

RETURN VALUES
A non-exceptional return indicates that the federate understands the interaction
notification.

An exceptional return will cause an entry to be made in the federate's RTI log file;
the interaction is ill considered to have been delivered to the federate.

EXCEPTIONS
RTI:: InteractionClassNotKnown - The specified interaction class handleis not valid
in the context of the current federation execution or is not subscribed by the
federate.

RTI:: InteractionParameter NotKnown - One or more of the specified parameters
handlesis not valid in the context of the specified interaction class.

RTI::InvalidFederationTime - The federation timeis not valid, i.e. atime-stamped-
ordered interaction has been delivered to atime-constrained federation in the
federate'spast. (In 1.0 there's no way for the federate to tell whether the receipt is
the result of atime-stamp-ordered interaction, so it's unclear when this exception
should be raised.)

RTI::FederatelnternalError - An error internal to the federate has occurred.

SEE AL SO
RTlambassador: : sendinteraction, RTlambasador: : setTimeConstrained,
RTlambassador: : subscribel nteractionClass,
RTlambassador : : Parameter HandleValuePair S,
FederateAmbassador : :reflectRetraction, RTlambassador: : timeAdvanceRequest,
FederateAmbassador : : refl ectAttributeValues

93

RTI 1.0 Programmer’s Guide

3.3.8 Delete Object

NAME

deleteObject - remove an object from the federation execution

HLA INTERFACE SPECIFICATION SERVICE
4.8 - Object Management (federate initiated)

SYNOPSIS

RTI::EventRetractionHandle
RTlambassador::deleteObject (
RTI::Objectl D objectl D
RTI::FederationTime theTime
const RTI::UserSuppliedTag theTag

thr ow

RTI:

RTI:

RTI::

RTI:
RTI:

RTI::

RTI:
RTI::RTlinternalError

)

:ObjectNotKnown,
:DeletePrivilegeNotHeld,
InvalidFederationTime,

:Feder ateNotExecutionM ember,
:ConcurrentAccessAttempted,
Savel nProgress,
:RestorelnProgress,

ARGUMENTS
objectiD

object to be deleted from the federation execution.

theTime

theTag

time at which the object deletion isto become effective.

string value that will be passed to resulting invocations of

FederateAmbassador ::removeObject. This may contain a description of the

reason for the object deletion, or any other information that is meaningful

for aparticular federation. The caller isresponsible for freeing the storage

space associated with this string and may do so at itsleisure.

DESCRIPTION

The federate invokes this service when it wishes to remove an object from the

federation execution. To delete an object, a federate must hold the ownership token

of the object's specia "privilege to delete” attribute (referenced by

PRIVILEGE_TO_DELETE_HANDLE.) Thistokenisinitially held by the federate
that registered the object with the federation execution.

If the federate istime regulating and any of the instance's attributes are being sent

time-stamp-ordered by the federate, the object deletion message will be designated

for time-stamp-ordered delivery, otherwise it will be sent receive-ordered.

A successful invocation of this service will trigger
FederateAmbassador : : removeObject callbacks on federates that have discovered the

94

RTI 1.0 Programmer’s Guide

specified object.

RETURN VALUES
A non-exceptional return indicates that an object-del etion message has been sent to
the other federates in the federation execution.

The RTI:: EventRetractionHandle returned by this function can be used to reinstate
the object viathe RTlambassador::retract service.

EXCEPTIONS
RTI:: ObjectNotKnown - The object ID isnot valid in the context of the current
federation execution or the object is not known to the federate.

RTI::DeletePrivilegeNotHeld - The federate does not hold the ownership token of
the specia "privilege to delete” attribute.

RTI::InvalidFederationTime - The The time value specified isnot alega timefor a
time-stamp-ordered update to be posted by the federate, i.e. it isless than the
federate'slogical time plusits lookahead. (Not thrown in 1.0.)

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador::tick.

RTI::SavelnProgress - The attempted action would have resulted in achange in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE AL SO

FederateAmbassador : :removeObject, RTlambassador::register Object,
RTlambassador::retract RTlambassador : : queryAttributeOwner ship

95

RTI 1.0 Programmer’s Guide

3.3.9 Remove Object +
NAME

removeObject - informs the federate that a specified object has been removed from
the federation execution or no longer meets the interest criteria of the federate

HLA INTERFACE SPECIFICATION SERVICE
4.9 - Object Management (RTI initiated)

SYNOPSIS
enum RTI::ObjectRemovaReason OUT_OF_REGION = 1,
OBJECT DELETED, NO_LONGER SUBSCRIBED ;

virtual

void

FederateAmbassador::removeObject (
RTI::ObjectI D theObject
RTI::ObjectRemovalReason theReason
RTI::FederationTimetheTime
const RTI:User SuppliedTag theTag
RTI::EventRetractionHandle theHandle

throw (
RTI::ObjectNotK nown,
RTI::InvalidFederationTime,
RTI::Federatel nternalError

)

A variation isinvoked when the object is being removed because its class has been
unsubscribed or it isno longer a constituent of any federate-subscribed region:

virtual

void

FederateAmbassador::removeObject (
RTI::ObjectI D theObject
RTI::ObjectRemovalReason theReason

throw (
RTI::ObjectNotK nown,
RTI::InvalidFederationTime,
RTI::Federatel nternalError

)

ARGUMENTS
theObject
object ID of the object being removed (must be an object that has previoudly
been discovered by the federate.)

theReason
value indicating the reason why the object is being removed from the
federate.

theTime

96

RTI 1.0 Programmer’s Guide

time at which the removal is effective.

theTag
string value that was passed to the invocation of

RTlambassador: : del eteObject that triggered this notification. This may
contain atextual description of the reason for deletion, or any other data that
is meaningful for a particular federation. The caller maintains ownership of
the storage associated with this string; the federate ambassador should make
acopy if it wishesto retain thisinformation after the completion of the call.

theHandle
event handle that may later be used to retract the specified removal.

DESCRIPTION
This callback notifies the federate that the specified object has been removed from
the set of objects "known" by the federate; this can occur when an object is deleted
from the federation execution, the object's class is unsubscribed by the federate, or
the object no longer belongs to any subscribed region of the federate.

The federate will receive no further attribute reflections for objects that have been
deleted (unless they are reinstated with a subsequent

FederateAmbassador: : discoverObject.) Any ownership tokens for attributes of this
object held by the federate have been destroyed, transferred to another federate, or
become unowned.

If the federate is time-constrained and the object removal is due to atime-stamp-
ordered message from another federate (i.e. adeletion or an update that causes the
the object to no longer be included in any federate-subscribed regions), the removal
notification will be scheduled for presentation to the federate in time-stamped-order
(see RTlambassador : : refl ectAttributeVal ues for a discussion of what this means),
otherwise it will be eligible for immediate presentation (i.e. receive-ordered.)

RETURN VALUES
A non-exceptiond return indicates that the federate understands the removal
notification.

An exceptional return will cause an entry to be made in the federate's RTI log; the
object will still be considered deleted from the federate.

EXCEPTIONS
RTI:: ObjectNotKnown - The object ID does not correspond to an object previously
discovered by the federate.

RTI::InvalidFederationTime - The federation timeis not valid, i.e. atime-stamped-
ordered deletion notification has been delivered to atime-constrained federation in
the federate's past. (In 1.0 there's no way for the federate to tell whether the
reflection isthe result of atime-stamp-ordered update, so it's unclear when this
exception should be raised.)

RTI::FederatelnternalError - An error internal to the federate has occurred.
SEE AL SO

RTlambassador:: del eteObject, FederateAmbassador : : discover Object,
RTlambassador : : unsubscribeObjectClassAttribute,

97

RTI 1.0 Programmer’s Guide

FederateAmbassador :: reflectRetraction

98

RTI 1.0 Programmer’s Guide

3.3.10 Change Attribute Transportation Type

NAME
changeAttributeTransportType - change the transportation mechanism used by the
federate for updates of a specified set of attributes of a specified object

HLA INTERFACE SPECIFICATION SERVICE
4.10 - Object Management (federate initiated)

SYNOPSIS
enum RTI::TransportType RELIABLE =1, BEST_EFFORT ;

void
RTlambassador::changeAttributeTransportType (
RTI::ObjectI D theObject
const RTI::AttributeHandleSet& theAttributes
RTI::TransportType theType

throw
RTI::ObjectNotK nown,
RTI::AttributeNotDefined,
RTI::AttributeNotOwned,
RTI::InvalidTransportType,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

ARGUMENTS
theObject
object whose attributes the federate wishes to change the transportation
mechanism of.

theAttributes
set of attributes that the federate wishes to change the transportation
mechanism of. The caller isresponsible for freeing the storage associated
with this parameter and may do so at itsleisure.

theType
enumerated val ue specifying the new transportation mechanism to be used
for the updates of the specified attributes.

DESCRIPTION
The federate can utilize this service to dynamically specify the mechanism by which
updates of the given set of object-attributes are delivered (the default valueis
determined by the federate initidization file, $RTI_CONFIG/[federation
name] .fed.) Thischange only affects the local federate and only affectsthe
attributes of the specified class instance (not the object classitself.) The federate
need not own a given attribute in order to change its transport mechanism.

The following transport options are available:

99

RTI 1.0 Programmer’s Guide

RELIABLE
are guaranteed to be delivered to each of the federates currently joined in the
federation. In 1.0 thisisimplemented using TCP sockets, with the
federation executive serving as an "exploder” for federation messages. This
means that reliable updates are high-latency, may cause the federate to block
while sending, and have limited bandwidth available. However, itis
necessary to use this transport for essentia updates (e.g. missile
detonations, collision notifications.)

BEST EFFORT
might not be delivered to one or more federates currently involved in
federation execution. 1n 1.0 thisisimplemented using multicast datagrams.
Best effort updates are low-latency and low-overhead and are therefore the
preferred transport mechanism for non-essential types of updates (e.g.
routine position notifications.)

RETURN VALUES
A non-exceptiona exit indicates that future updates for the specified object-
attributes will use the specified transport mechanism.

EXCEPTIONS
RTI:: ObjectNotKnown - The object handle is not valid within the context of the
federation execution or the object is not known by the federate.

RTI:: AttributeNotDefined - One or more of the attribute handles is not valid within
the context of the specified object.

RTI:: AttributeNotOwned - Not thrown; the federate need not own a given attribute
to changeits transport type.

RTI::InvalidTransportType - The specified transport type was not a recognized
enumerated value.

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador::tick.

RTI::SavelnProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTlambassador : : changeAttributeOrder Type,
RTlambassador : : updateAttributeValues,
RTlambassador:: changel nteractionTransportType, RTI:: AttributeHandleSet

100

RTI 1.0 Programmer’s Guide

101

RTI 1.0 Programmer’s Guide

3.3.11 Change Attribute Order Type
NAME

changeAttributeOrder Type - change the ordering policy used by the federate for
updates of a specified set of attributes of a specified object

HLA INTERFACE SPECIFICATION SERVICE
4.11 - Object Management (federate initiated)

SYNOPSIS
enum RTI::OrderType RECEIVE=1, TIMESTAMP;

void

RTlambassador ::changeAttributeOrder Type (
RTI::ObjectI D theObject
const RTI::AttributeHandleSet& theAttributes
RTI::OrderType theType

throw
RTI::ObjectNotK nown,
RTI::AttributeNotDefined,
RTI::AttributeNotOwned,
RTI::InvalidOrder Type,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

ARGUMENTS

theObject
object whose attributes the federate wishes to change the ordering policy of.

theAttributes
set of attributes that the federate wishes to change the ordering policy of.
The caller isresponsible for freeing the storage associated with this
parameter and may do so at itsleisure.

theType
enumerated val ue specifying the new ordering policy to be used for updates
of the specified attributes.

DESCRIPTION
The federate can utilize this service to dynamically specify the ordering policy by
which updates of the given set of object-attributes by the local federate are delivered
(the default value is determined by the federate initialization file,
$RTI_CONFIG/[federation name].fed.) This change only affects the local federate
and only affects the attributes of the specified class instance (not the object class
itself.) The federate need not own a given attribute in order to change its ordering
policy.

Note that if the federate is not time regulating, all updates will be sent asrecelve-

102

RTI 1.0 Programmer’s Guide

order, regardless of the attributes ordering policies.
The following ordering policies are available:

RECEIVE
receipt of the update by aremote federate's transportation manager, it is
immediately placed into its event queue for processing by
RTlambassador::tick, regardless of the update's time-stamp. This policy
minimizes overhead, but out-of-order delivery is unacceptable in some
situations (of course, the federate may choose to do its own ordering based,
e.g., on time information encoded in the user-specified tag portion of the
update.)

TIMESTAMP
agiven remote federate is time constrained, the update is placed in itstime-
stamp-ordered message queue for delivery at the appropriate time, as
determined by the update time-stamp. Federates that are not time
constrained will treat the message asiif it were receive-order. This policy
incurs more overhead but will be necessary for certain types of simulations.

RETURN VALUES
A non-exceptional return indicates that future updates of the specified object-
attributes will use the specified ordering policy.

EXCEPTIONS
RTI:: ObjectNotKnown - The object handle is not valid within the context of the
federation execution or the object is not known by the federate.

RTI:: AttributeNotDefined - One or more of the attribute handles is not valid within
the context of the specified object.

RTI:: AttributeNotOwned - Not thrown; the federate need not own a given attribute
to change its ordering policy.

RTI::InvalidOrder Type - The specified ordering policy was not arecognized
enumerated value.

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador ::tick.

RTI::SavelnProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE AL SO

103

RTI 1.0 Programmer’s Guide

RTlambassador : : changeAttributeTransportType,

RTlambassador :: updateAttributeValues, RTlambassador::tick,
RTlambassador: :turnRegulationOn, RTlambassador: : setTimeConstrained,
RTI:: AttributeHandl eSet

104

RTI 1.0 Programmer’s Guide

3.3.12 Change Interaction Transportation Type

NAME

changel nteractionTransportType - change the transportation mechanism used by the
federate for interactions of a specified class

HLA INTERFACE SPECIFICATION SERVICE

4.12 -
SYNOPSIS

Object Management (federate initiated)

enum RTI::TransportType RELIABLE =1, BEST_EFFORT ;

void

RTlambassador::changel nteractionTransportType (

RTI:
RTI:

:InteractionClassHandle theClass

:TransportTypetheType

throw (

RTI
RTI

)

:InteractionClassNotDefined,

;:InteractionClassNotPublished,
RTI:
RTI::
RTI::
RTI:
RTI::
RTI:

‘InvalidTransportType,
FederateNotExecutionM ember,
ConcurrentAccessAttempted,
:Savel nProgr ess,

Restor el nProgr ess,
:RTlinternalError

ARGUMENTS
theClass

class of interactions that the federate wishes to change the transportation
mechanism of.

theType

enumerated val ue specifying the new transportation mechanism to be used
for interactions of the specified class.

DESCRIPTION
The federate can utilize this service to dynamically specify the mechanism by which
instances of agiven interactions class are delivered (the default value is determined
by the federate initidization file, RTI_CONFIG/[federation name] .fed.) This
change only affects the local federate and only affects the specified interaction class
(not subclasses of the interaction class.) The federate must be currently publishing
an interaction classin order to change its transport mechanism.

The following transport options are available:

RELIABLE

are guaranteed to be delivered to each of the federates currently joined in the
federation. In 1.0 thisisimplemented using TCP sockets, with the
federation executive serving as an "exploder” for federation messages. This
means that reliable interactions are high-latency, may cause the federate to
block while sending, and have limited bandwidth available. However, it is

105

RTI 1.0 Programmer’s Guide

necessary to use this transport for essential interactions (e.g. missile
detonations, collision notifications.)

BEST EFFORT
might not be delivered to one or more federates currently involved in
federation execution. 1n 1.0 thisisimplemented using multicast datagrams.
Best effort interactions are low-latency and low-overhead and are therefore
the preferred transport mechanism for non-essential types of interactions.

RETURN VALUES
A non-exceptional return indicates that future interactions of the specified class will
be sent using the specified transportation mechanism.

EXCEPTIONS
RTI:: InteractionClassNotDefined - The interaction class handle is not valid within
the context of the current federation execution.

RTI::InteractionClassNotPublished - The federateis not currently publishing the
given interaction class.

RTI::InvalidTransportType - The specified transport type was not a recognized
enumerated value.

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador::tick.

RTI::SavelnProgress - The attempted action would have resulted in achange in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTlambassador: : changel nteractionOrder Type, RTlambassador: : sendinteraction,
RTlambassador : : changeAttributeTransportType,
RTlambassador :: publishinteractionClass

106

RTI 1.0 Programmer’s Guide

3.3.13 Change Interaction Order Type
NAME

changel nteractionOrder Type - change the ordering policy used by the federate for
interactions of a specified class

HLA INTERFACE SPECIFICATION SERVICE
4.13 - Object Management (federate initiated)

SYNOPSIS
enum RTI::OrderType RECEIVE=1, TIMESTAMP;

void

RTlambassador::changel nteractionOrder Type (
RTI::InteractionClassHandle theClass
RTI::OrderTypetheType

throw (
RTI::InteractionClassNotDefined,
RTI::InteractionClassNotPublished,
RTI::InvalidOrder Type,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

ARGUMENTS
theClass
class of interactions that the federate wishes to change the ordering policy
of.

theType
enumerate value specifying the new ordering policy to be used for instances
of the specified interaction class.

DESCRIPTION
The federate can utilize this service to dynamically specify the ordering policy by
which instances of the given interaction class are delivered (the default valueis
determined by the federate initialization file, 3RTI_CONFIG/[federation
name] .fed.) Thischange only affectsthe local federate and only affectsthe
specified interaction class (not subclasses of the interaction class.) The federate
must be currently publishing an interaction classin order to changeits ordering
policy.

Note that if the federate is not time regulating, all interactionswill be sent as
receive-order, regardless of the interactions' stated ordering policies.

The following ordering policies are available:
RECEIVE
receipt of the interaction by aremote federate's transportation manager, it is

107

RTI 1.0 Programmer’s Guide

immediately placed into its event queue for processing by
RTlambassador::tick, regardless of the interaction's time-stamp.

TIMESTAMP
agiven remote federate is time constrained, the interaction is placed in its
time-stamp-ordered message queue for delivery at the appropriate time, as
determined by the update time-stamp. Federates that are not time
constrained will treat the interaction asif it were receive-order.

RETURN VALUES
A non-exceptional return indicates that future interactions of the specified class will
be sent using the specified ordering policy.

EXCEPTIONS
RTI:: InteractionClassNotDefined - The interaction class handle is not valid within
the context of the current federation execution.

RTI::InteractionClassNotPublished - The federateis not currently publishing the
given interaction class.

RTI::InvalidOrder Type - The specified ordering policy was not arecognized
enumerated value.

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador::tick.

RTI::SavelnProgress - The attempted action would have resulted in achange in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTlambassador : : changel nteractionTransportType,
RTlambassador: : updatel nteractionValues, RTI::InteractionHandleSet

108

RTI 1.0 Programmer’s Guide

3.3.14 Request Attribute Value Update
NAME

requestObjectAttributeValueUpdate, requestClassAttributeValueUpdate - stimulate
the generation of attribute updates for a given object or a given class of objects

HLA INTERFACE SPECIFICATION SERVICE
4.14 - Object Management (federate initiated)

SYNOPSIS
void
RTlambassador::requestObjectAttributeValueUpdate (
RTI::ObjectI D theObject
const RTI::AttributeHandleSet& theAttributes

throw
RTI::AttributeNotDefined,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

A second method can be used to stimulate updates for all instances of a given object
class:

void

RTlambassador ::.requestClassAttributeValueUpdate (
RTI::0bjectClassHandle theClass
const RTI::AttributeHandleSet& theAttributes

throw
RTI::ObjectClassNotDefined,
RTI::AttributeNotDefined,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

ARGUMENTS

theObject
object whose attributes are being requested.

theClass
object class whose attributes are being requested.

theAttributes

set of attributes of the given object or class for which updates are requested.
The caller isresponsible for freeing the storage space associated with this
set and may do so at itsleisure.

109

RTI 1.0 Programmer’s Guide

DESCRIPTION
This method solicits an update of the specified object-attributes from the federation.
Thiswill result in invocations of
FederateAmbassador : : provideAttributeValueUpdate on the federate(s) holding the
ownership tokens of the specified object-attributes. Upon receipt of an attribute
value update request, the remote federate should issue an update of the requested
attributes.

If the request isfor aclass of objects, then updates of subclasses of the class are
requested as well.

Asagiven object is not discovered by afederate until the receipt of an attribute
update for that object, this service provesto be useful way for late-arriving
federates to discover objects aready existing in the federation (particularly if
updates for these objects are ordinarily made infrequently.)

One or more updates can result from a single attribute update request (even for a
single object instance), as different subsets of the requested attributes may be
owned by different federates. There isno guarantee that updates for al the
requested attributes will be received. If an attribute's ownership token no longer
existsor is not held by any federate (or if the federate holding the token ignores the
attribute update request!), the requesting federate will simply not receive an attribute
update for the attribute; no negative acknowledgement is provided.

RETURN VALUES
A non-exceptional return indicates that the specified object-attribute updates have
been solicited from the federation; the federate will be notified of any resultsviaits
FederateAmbassador : : refl ectAttributeVal ues callback (this does not occur
synchronously with respect to the request method, but will occur at alater timein
response to an invocation of the RTlambassador::tick.)

EXCEPTIONS
RTI:: AttributeNotDefined - One or more of the attribute handles is not valid within
the context of the specified object or object class.

RTI:: ObjectClassNotDefined - The specified object class handle is not valid within
the context of the current federation execution.

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador ::tick.

RTI::SavelnProgress - The attempted action would have resulted in achange in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

110

RTI 1.0 Programmer’s Guide

SEE AL SO
FederateAmbassador : : provideAttributeValueUpdate,
RTlambassador:: discover Object, FederateAmbassador :: reflectAttributeValues

111

RTI 1.0 Programmer’s Guide

3.3.15 Provide Attribute Value Update +

NAME
provideAttributeValueUpdate - callback invoked by RTI to solicit an attribute-value
update from the federate

HLA INTERFACE SPECIFICATION SERVICE
4.15 - Object Management (RTI initiated)

SYNOPSIS
virtual
void
FederateAmbassador::provideAttributeValueUpdate (
RTI::ObjectI D theObject
const RTI::AttributeHandleSet& theAttributes

throw (
RTI::ObjectNotK nown,
RTI::AttributeNotK nown,
RTI::Federatel nternalError

)

ARGUMENTS

theObject
object ID of the object for whom an attribute-value update i s requested.

theAttributes
set of attributes for which an update is requested; these must be attributes
whose ownership tokens are held by the federate. The caller maintains
ownership of the storage associated with this set; the federate ambassador
should make a copy if it wishesto retain thisinformation after the
completion of the call.

DESCRIPTION
This callback isinvoked to notify the federate that an attribute-update has been
requested by another federate viaits
RTlambassador: : requestClass,ObjectAttributeValueUpdate service. (Note that one
attribute-val ue request can trigger multiple provide attribute-value update callbacks
on different federates.)

Upon receipt of such arequest, the federate should update the specified object-
attributes (using RTlambassador : : updateAttributeValues) as soon as possible.
(Keep in mind that this may not be done from inside the

FederateAmbassador :: provideAttributeVal ueUpdate callback as this would result in
aconcurrent access violation.)

RETURN VALUES
A non-exceptional return indicates that the federate understands the attribute value
update request and intends to update the specified object-attributes.

An exceptiona return will cause an entry to be made in the federate's RTI log file;
the federate is still responsible for updating the requested attributes.

112

RTI 1.0 Programmer’s Guide

EXCEPTIONS
RTI:: ObjectNotKnown - The object ID isnot valid in the context of the current
federation execution or the object is not known by the federate.

RTI:: AttributeNotKnown - One or more of the attribute handlesis not vaid in the
context of the specified object or the federate does not hold the attribute's
ownership token.

RTI::FederatelnternalError - An error internal to the federate has occurred.

SEE AL SO
RTlambassador: : requestObjectAttributeVal ueUpdate,
RTlambassador :: updateAttributeValues

113

RTI 1.0 Programmer’s Guide

3.3.16 Retract

NAME
retract - cancel an update, interaction, or deletion previously scheduled by the
federate

HLA INTERFACE SPECIFICATION SERVICE
4.16 - Object Management (federate initiated)

SYNOPSIS
void
RTlambassador::retract (
RTI::EventRetractionHandle theHandle

throw
RTI::InvalidRetractionHandle,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

ARGUMENTS
theHandle
event-retraction handle (as obtained from
RTlambassador::updateAttributeV alues, sendlnteraction, deleteObject) of
the event to unschedule.

DESCRIPTION
The federate can utilize this service to withdraw an update, interaction, or deletion it
has previously scheduled (or, in 1.0, has been scheduled by another federate.)) A
successful invocation will result in the issuance of an event-retraction message to
every federate in the federation execution. If the specified event is currently queued
for delivery to a given remote federate, it isremoved from its queue. If the
specified event has been recently delivered to the federate (1.0 remembers the last
50,000 events delivered), the federate's FederateAmbassador : :refl ectRetraction
callback isinvoked and the federate is responsible for rolling back its state as

appropriate.

Whilethe RTI event retraction services don't do very much in and of themselves,
they provide a cornerstone upon which optimistic smulations can be built using
such techniques as "anti-messages.”

RETURN VALUES
A non-exceptiond return indicates that the other federates in the federation
execution have been advised to cancel the event specified by the retraction handle.

EXCEPTIONS
RTI::InvalidRetractionHandle - The event-retraction handle does not correspond to
an event previoudy scheduled by the federate. (Not thrownin 1.0.)

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently

114

RTI 1.0 Programmer’s Guide

associ ated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador ::tick.

RTI::SavelnProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
FederateAmbassador : :reflectRetraction, |RTlambassador : : updateAttributeVal ues,
RTlambassaador: : sendinteraction, RTlambassador: : del eteObject

115

RTI 1.0 Programmer’s Guide

3.3.17 Reflect Retraction +

NAME
reflectRetraction - inform the federate that a previoudy-delivered attribute-vaue
update, interaction, or object deletion notification has been cancelled

HLA INTERFACE SPECIFICATION SERVICE
4.17 - Object Management (RTI initiated)

SYNOPSIS
virtual
void
FederateAmbassador::reflectRetraction (
RTI::EventRetractionHandle theHandle

throw (
RTI::EventNotK nown,
RTI::Federatel nternalError

)

ARGUMENTS
theHandle
event retraction handle of the event to retract (should correspond to an
event-retraction handle previously passed to
FederateAmbassador : : discover Object,r efl ectAttributeVal ues,receivel nter acti
on,removeObject.)

DESCRIPTION
This callback isinvoked when the federate's time manager receives an event
retraction request for an event that has already been delivered to the federate. The
retraction request is the result of an RTlambassador::retract invocation by another
federate (in 1.0, not necessarily the federate issuing the event.) The federateis
responsible for rolling back its state as is necessary to accommodate the
cancellation.

The event-retraction facilitiesin 1.0 are very open-ended, allowing a variety of
optimistic simulation techniques such as "anti-messages’ to be built on top of them.

RETURN VALUES
A non-exceptiond return indicates that the federate recognizes the event retraction
handle and will take the necessary stepsto roll-back its federate state.

An exceptiona return will cause an entry in the federate's RTI log file; the event is
still assumed to have been successfully retracted.

EXCEPTIONS
RTI:: EventNotKnown - The specified event retraction handle does not correspond
to an event that has previoudly been delivered to the federation.
RTI::FederatelnternalError - An error interna to the federate has occurred.

SEE AL SO
RTlambassador::retract, FederateAmbassador: : discover Object,

116

RTI 1.0 Programmer’s Guide

FederateAmbassador : :refl ectAttributeVal ues,
FederateAmbassador : : receivel nteraction, FederateAmbassador: : removeObject

117

RTI 1.0 Programmer’s Guide

3.4 Ownership Management

Table 3-26: Ownership Management Services

Section Service Title Service |mplemented
5.1 Reguest Attribute Ownership Divestiture Yes
5.2 Request Attribute Ownership Assumption T Yes
5.3 Attribute Ownership Divestiture Notification t Yes
5.4 Attribute Ownership Acguisition Notification T Yes
5.5 Regquest Attribute Ownership Acquisition Yes
5.6 Request Attribute Ownership Release T Yes
5.7 Query Attribute Ownership Yes

118

RTI 1.0 Programmer’s Guide

3.4.1 Request Attribute Ownership Divestiture
NAME
requestAttributeOwner shipDivestiture - inform the RTI that the federate wishesto

relinquish ownership of a specified set of object attributes and solicit bids to assume
ownership of said attributes

HLA INTERFACE SPECIFICATION SERVICE
5.1 - Ownership Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

enum RTI::OwnershipDivestitureCondition ~ NEGOTIATED = 1,
UNCONDITIONAL ;

void

requestAttributeOwner shipDivestiture (
RTI::ObjectI D theObject

const RTI::AttributeHandleSet& theAttributes
RTI::OwnershipDivestitureCondition theCondition
const RTI::UserSuppliedTag theTag

throw
RTI::ObjectNotK nown,
RTI::AttributeNotDefined,
RTI::AttributeNotOwned,
RTI::InvalidDivestitureCondition,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

A variation allows the divesting federate to designate which federates may submit
bids for attribute ownership:

void

requestAttributeOwner shipDivestiture (
RTI::ObjectI D theObject
const RTI::AttributeHandleSet& theAttributes
RTI::OwnershipDivestitureCondition theCondition
const RTI::UserSuppliedTag theTag

const RTI::FederateHandleSet& theCandidates

throw
RTI::ObjectNotK nown,
RTI::AttributeNotDefined,
RTI::AttributeNotOwned,
RTI::InvalidDivestitureCondition,
RTI::FederateDoesNotEXxist,
RTI::FederateNotExecutionM ember,

119

RTI 1.0 Programmer’s Guide

RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

ARGUMENTS

theObject
object whose attributes the federate wishes to divest ownership

theAttributes
set of attributes that the federate wishesto divest ownership of. The caler is
responsible for freeing the memory associated with the set and may do so at
any time after the completion of the call.

theCondition
enumerated value indicating whether the federate wishesto be relieved of
attribute publication responsibility even in the absence of an accepting
federate.

theTag
string value that can contain a description of the reason for the divestiture

reguest or any other datathat is meaningful for a particular federation. The
caler isresponsible for freeing the storage associated with this string and
may do so at any time after the completion of the call.

theCandidates
set of federates that are to be offered ownership of the attributes being
divested. Thecaller isresponsible for freeing the storage associated with
this set and may do so at any time after the completion of the call.

DESCRIPTION
The federate uses this method to request to be relieved of attribute publication
responsibility. The federate must hold the ownership token for all attributesit
attempts to divest; multiple negotiated divestiture requests may be made for the
same object attribute in the absence of an acquiring federate.

The request sent out by this method will result in the invocation of the
FederateAmbassador : : requestAttributeOwner shipAssumption method in each of the
candidate federates (or al federatesjoin in the execution if no candidate federates
were specified.) Thismay result in one or more of these federates making a bid for
some or al of the offered attributes; the divesting federate's object manager will
transfer the ownership token for a given attribute to the submitter of the first bid (or
attribute acquisition request) received for the attribute.

If the federate specifies a negotiated divestiture, it will retain ownership of agiven
attribute until the receipt of a notification that another federate is willing to assume
ownership (this notification can consist of an ownership bid made in response to
the attribute assumption request or an attribute acquisition request made
independently.) At this point, the federate's object manager will send an attribute
assumption notification to the assuming federate and inform the divesting federate,
via aFederateAmbassador: : attributeOwner shipDivestitureNotification callback, that
it has been relieved of ownership of the attribute.

120

RTI 1.0 Programmer’s Guide

If the federate specifies an unconditional divestiture, it isimmediately relieved of
ownership of all divested attributes and is notified of thisviaa

| Feder ateAmbassador : : attributeOwner shipDivestitureNotification callback (this
callback does not occur synchronoudly with respect to the attribute divestiture
request, but is queued up for future processing by the RTlambassador::tick
service.) At thispoint, the ownership tokens are not held by any federate
(technically, the tokens still reside in the object manager of the divesting federate)
and will be transferred to the first federate expressing interest (i.e. responding to the
attribute assumption request or submitting an independent request for attribute
acquisition.)

Note that the candidate set only defines which federates are explicitly offered
ownership of the tokensviathe

Feder ateAmbassador : : requestAttributeOwner shipAssumption method; this does not
prevent non-candidate federates from assuming ownership of the tokens by making
an attribute acquisition request viathe

RTlambassador: : requestAttributeOwner shipAcquisition service.

Thereis no negative acknowledgement of a negotiated attribute divestiture request;
if the federate receives no positive response within a reasonable amount of time it
may wish to issue another attribute divestiture request.

Multiple ownership divestiture notifications may result from asingle divestiture
request, as different federates may assume ownership of different subsets of the
offered attributes.

RETURN VALUES
A non-exceptional return indicates that the candidate federates (or all federates, if no
candidate federates were specified) have been offered ownership of the specified
attributes and that the calling federate's object manager has been instructed to
transfer the attribute ownership tokens to the first federate willing to assume them.
If an unconditional divestiture was specified, an
attributeOwner shipDivestitureNotification has been queued for delivery to the
federate ambassador on a subsequent RTlambassador::tick (if a negotiated
divestiture was specified, these notifications are given only after a given attribute
has been divested.)

EXCEPTIONS
RTI:: ObjectNotKnown - The specified object handle does not correspond to an
object known by the federate's object manager.

RTI:: AttributeNotDefined - One or more of the attribute handlesis not valid in the
context of the specified object.

RTI:: AttributeNotOwned - One or more of the ownership tokens for the specified
attributes is not held by the federate.

RTI::InvalidDivestitureCondition - The specified divestiture condition was not a
recognized enumerated value.

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI

121

RTI 1.0 Programmer’s Guide

ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador::tick.

RTI::SavelnProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE AL SO
FederateAmbassador : : requestAttributeOwner shipAssumption,
FederateAmbassador :: attributeOwner shipDivestitureNotification,
RTlambassador: : requestAttributeOwner shipAcquisition,
RTlambassador: : queryAttributeOwner ship, RTI::FederateHandleSet,
RTI:: AttributeHandl eSet

122

RTI 1.0 Programmer’s Guide

3.4.2 Request Attribute Ownership Assumption +
NAME
reguestAttributeOwner shipAssumption - informs the federate of another federate's

desireto divest ownership of aset of attributes and allows the federate to submit a
bid on some or al of the offered attributes

HLA INTERFACE SPECIFICATION SERVICE
5.2 - Ownership Management (RTI initiated)

SYNOPSIS
#include <RTI.hh>

virtual
RTI::AttributeHandleSet&

FederateAmbassador::requestAttributeOwner shipAssumption (
RTI::ObjectI D theObject

const RTI::AttributeHandleSet& offeredAttributes
const RTI::UserSuppliedTag theTag

throw (
RTI::ObjectNotK nown,
RTI::AttributeAlreadyOwned,
RTI::FederatelnternalError

)

A variation on this method does not include the user-supplied-tag argument:

virtual

RTI::AttributeHandleSet& Feder ateAmbassador ::requestAttributeOwne
rshipAssumption (

RTI::ObjectI D theObject

const RTI::AttributeHandleSet& offeredAttributes

throw (
RTI::ObjectNotK nown,
RTI::AttributeAlreadyOwned,
RTI::FederatelnternalError

)

ARGUMENTS
theObject
handle of the object whose attribute ownership tokens are being offered.

offeredAttributes
set of attributes whose ownership tokens are being offered. The caller
maintains ownership of the storage space associated with this set; the

federate ambassador should create a copy if it wishesto retain the values
after the completion of the call.

theTag
string provided as an argument to the
RTlambassador : : requestAttributeOwner shipDivestiture method invocation

123

RTI 1.0 Programmer’s Guide

that initiated the attribute assumption request. This string may contain a
description of the reason for the divestiture request or any other datathisis
meaningful for a particular federation. The caller maintains ownership of
the storage space associated with the string; the federate ambassador should
create acopy if it wishesto retain thisinformation after the completion of
the call.

DESCRIPTION
This callback method is invoked upon the receipt of arequest from another federate
to assume ownership of aset of attributes. This request may be the result of an
explicit action taken by the federate (i.e. acall to the
RTlambassador : : requestAttributeOwner shipDivestiture service method) or an
implicit divestiture of ownership tokens due to an unsubscription or resignation.

To be eligible for assumption, an attribute must be published and subscribed by the
federate; ineligible attributes are automatically filtered out by the object manager and
will not be presented to the

FederateAmbassador : : requestAttributeOwner shipAssumption method.

The federate ambassador communicates (viathe return value) which attributes, if
any, it iswilling to assume ownership of. The return of a non-empty attribute set
resultsin an ownership token bid being placed on the behalf of the federate.
Usually, attribute tokens are transferred to the submitter of the first ownership bid
received. If the federate receives ownership of any tokens, it will be notified viaa
FederateAmbassador : : attributeOwner shipAcquisitionNotification callback.

There is no negative acknowledgement of an ownership token bid; no further action
will occur as aresult of abid for agiven attribute if the federate failsto acquire
ownership of the attribute.

RETURN VALUES
The method should allocate storage space for the return value on the heap (using the
AttributeHandleSetFactory: : create service); the caller assumes responsibility for the
disposal of this storage.

The return of a non-empty attribute set indicates the federate's desire to submit abid
for ownership of the contained attributes. Note that the willingness to accept
ownership of an attribute does not guarantee that ownership will be granted; the
federate does not assume ownership until it receives an

FederateAmbassador : : attributeOwner shipAcquisitionNotification callback. 1f
multiple federates are submitting bids, as is often the caseg, it is possible that the
federate will not be granted ownership of some or al of the attributes it agreesto
accept.

EXCEPTIONS
RTI:: ObjectNotKnown - The object ID does not correspond to an object previously
discovered by the federate.

RTI:: AttributeAlreadyOwned - One or more of the attributes contained inthe set is
already owned by the federate.

RTI::FederatelnternalError - An error internal to the federate has occurred; this
exception will result in an entry being made to the federate's RTI log.

124

RTI 1.0 Programmer’s Guide

SEE AL SO
RTlambassador : : requestAttributeOwner shipDivestiture,
FederateAmbassador : : attributeOwner shipAcquisitionNotification,
RTlambassador : : unsubscribeObj ectClassAttribute,
RTlambassador::resignFederationExecution, RTI:: AttributeHandleSet

125

RTI 1.0 Programmer’s Guide

3.4.3 Attribute Ownership Divestiture Notification +

NAME
attributeOwner shipDivestitureNotification - informs the federate that ownership
tokensfor aset of attributes have been divested; the federate isrelieved of
publication duties and can no longer produce updates for the divested attributes

HLA INTERFACE SPECIFICATION SERVICE
5.3 - Ownership Management (RTI initiated)

SYNOPSIS
#include <RTI.hh>

virtual

void

FederateAmbassador ::attributeOwner shipDivestitureNotification (
RTI::ObjectI D theObject

const RTI::AttributeHandleSet& releasedAttributes

throw (
RTI::ObjectNotK nown,
RTI::AttributeNotK nown,
RTI::Federatel nternalError

)

ARGUMENTS

theObject
object whose attribute have been divested.

rel easedAttributes
set of attributes that the federateis being relieved of. The caller maintains
ownership of the storage space for this set; the federate ambassador must
make a copy if it wishesto retain thisinformation after the completion of the
call.

DESCRIPTION
This method informs the federate that it has been relieved of a set of attributes for
which it has an outstanding ownership divestiture request, or has agreed to release
as per aFederateAmbassador :: requestAttributeOwner shipRel ease request.

If an unconditional divestiture was requested, the federate will receive this
notification immediately after the divestiture request

(RTlambassador : : requestAttributeOwner shipDivestiture will enqueue the
notification in the federate's pending message list for processing by
RTlambassador::tick.) If anegotiated divestiture was requested, this notification is
not issued until the receipt of a positive response to the divestiture request or the
receipt of attribute acquisition request made by another federate.

Multiple ownership divestiture notifications may result from asingle divestiture
request, as different federates may assume ownership of different subsets of the
offered attributes.

If the federate has agreed to release attributes as per an acquisition request made by

126

RTI 1.0 Programmer’s Guide

another federate, the divetiture notification will be delivered immediately upon the
return from the FederateAmbassador : : requestAttributeOwner shipRel ease method
(i.e. the RTI does not wait until a subsequent RTlambassador::tick as is the usual
policy for delivery of notifications.)

Subsequent attempts to update divested attributes will result in an
RTI:: AttributeNotOwned exception.

RETURN VALUES
A non-exceptional return indicates that the federate recogni zes the specified object
and attributes and will cease publication of updates for the attributes. (Even if this
method raises an exception, the federate will still be relieved of ownership of the
specified tokens after an entry has been made in the federate's RTI log.)

EXCEPTIONS
RTI:: ObjectNotKnown - The federate has not discovered an object with the
specified object ID.

RTI:: AttributeNotKnown - One or more of the attributes are not valid in the context
of the specified object or have not been the subject of a divestiture request.

RTI::FederatelnternalError - An error interna to the federate has occurred; this
exception will result in an entry being made to the federate's RTI log.

SEE ALSO
RTlambassador : : requestAttributeOwner shipDivestiture,
FederateAmbassador : : requestAttributeOwner shipRelease, RTI:: AttributeHandleSet

127

RTI 1.0 Programmer’s Guide

3.4.4 Attribute Ownership Acquisition Notification +

NAME
attributeOwner shipAcquisitionNotification - informs the federate that the ownership
tokensfor a set of attributes have been acquired; the federate isto immediately
assume publication responsibility for the acquired attributes

HLA INTERFACE SPECIFICATION SERVICE
5.4 - Ownership Management (RTI initiated)

SYNOPSIS
virtual
voidFederateAmbassador ::attributeOwner shipAcquisitionNotification

(
RTI::ObjectI D theObject
const RTI::AttributeHandleSet& securedAttributes

throw (
RTI::ObjectNotK nown,
AttributeNotK nown,
FederatelnternalError

)

ARGUMENTS

theObject
object whose attributes have been acquired by the federate.

securedAttributes
set of attributes of the specified object that have been acquired by the
federate. The caller maintains ownership of the storage space associated
with the set; the federate ambassador should make a copy if it wishesto
retain the information after the completion of the call.

DESCRIPTION
This method informs the federate that it has acquired ownership tokens for the
given set of attributes; this acquisition may be the result of a successful ownership
bid made in response to an attribute assumption request, or the receipt of a positive
response to an attribute acquisition request.

Multiple acquisition notifications may result from asingle acquisition request, as
ownership tokens for different subsets of the set of requested attributes may reside
in different federates. It istheoretically possible, though unlikely, that multiple
acquisition notifications will result from a single attribute ownership bid.

RETURN VALUES
A non-exceptiona return indicates that the federate recognizes the specified object
and attributes and will assume ownership responsibilities of these attributes. An
exceptional return will result in an error message being entered into the RTI log file;
ownership of the tokenswill still be acquired by the federate.

EXCEPTIONS
RTI:: ObjectNotKnown - The federate has not discovered an object with the
specified object ID.

128

RTI 1.0 Programmer’s Guide

AttributeNotKnown - One or more of the attribute handles are not valid within the

context of the specified object, are already owned by the federate, or are not
published or not subscribed by the federate.

RTI::FederatelnternalError - An error internal to the federate has occurred.

SEE AL SO

RTlambassador::requestAttributeOwnershipAcquisition,
FederateA mbassador::requestA ttri buteOwnershi pAssumption,
FederateAmbassador::requestAttributeOwnershipRelease, RTI::AttributeHandleSet

129

RTI 1.0 Programmer’s Guide

3.4.5 Request Attribute Ownership Acquisition

NAME
requestAttributeOwner shipDivestiture - inform the federation of the federate's
desire to acquire ownership of a specified set of attributes for a specified object

HLA INTERFACE SPECIFICATION SERVICE
5.5 - Ownership Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void

requestAttributeOwner shipAcquisition (
RTI::ObjectI D theObject
const RTI::AttributeHandleSet& desiredAttributes
const RTI::UserSuppliedTag theTag

throw
RTI::ObjectNotK nown,
RTI::ObjectClassNotPublished,
RTI::ObjectClassNotSubscribed,
RTI::AttributeNotDefined,
RTI::AttributeNotPublished,
RTI::AttributeNotSubscribed,
RTI::FederateOwnsAttributes,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

ARGUMENTS

theObject
object whose attributes the federate wishes to acquire ownership of.

theAttributes
attributes of the specified object that the federate wishes to acquire
ownership of. Thecaller isresponsible for freeing the storage associated
with this set and may do so at any time after the completion of the call.

DESCRIPTION
This method informs the federation that the federate wishes to acquire ownership of
the specified attributes of the specified object. 1f the ownership token for agiven
attribute exists but is not held by any federate (technically, the token is held by the
object manager of some federate but not owned by the associated federate
ambassador), the federate is automatically granted ownership of the attribute. If the
token isheld by afederate, that federate is requested to relinquish control viaits
FederateAmbassador : : requestAttributeOwner shipRel ease method.

If the federate successfully acquires some or al of the requested attributes, it will be
notified viaits FederateAmbassador : : attributeOwner shipAcquisitionNotification

130

RTI 1.0 Programmer’s Guide

method. It is possible that a single acquisition request result in multiple acquisition
notifications, as different subsets of the set of requested attributes may be held by
different federates. These notifications do not occur synchronously with respect to
the acquisition request method, but will occur at alater timein response to an
RTlambassador::tick invocation.

There is no negative acknowledgement of ownership acquisition requests; if agiven
attribute ownership token no longer exists or if it isheld by afederate that declines
to relinquish control, then no further actions result from the ownership acquisition
request for that attribute.

A federate must publish and subscribe a given attribute and its associated object
class before attempting to acquire tokens for that attribute. (Note that here " object
class' refersto the class by which the federate knows an object, which may differ
from the actual class of the object.)

RETURN VALUES
A non-exceptional return indicates that a request has been made on behalf of the
federate to obtain ownership of the specified attributes. It isimportant to note that a
successful return of this method does not imply acquisition of the requested
attributes, only that the request has been successfully issued.

EXCEPTIONS
RTI:: ObjectNotKnown - The specified object ID isinvalid in the context of the
current federation execution, or the associated object is not known to the federate.

ObjectClassNotPublished - The object class of the specified object is not published
by the federate.

ObjectClassNotSubscribed - The object class of the specified object is not
subscribed by the federate.

AttributeNotDefined - One or more of the specified attribute handlesisnot vaid in
the context of the specified object's object class.

AttributeNotPublished - One or more of the specified attribute handles is not
published by the federate.

AttributeNotSubscribed - One or more of the specified attribute handlesis not
subscribed by the federate.

FederateOwnsAttributes - The federate already holds ownership tokens for one or
more of the attributes specified.

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador::tick.

RTI::SavelnProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a"save" operation.

131

RTI 1.0 Programmer’s Guide

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE AL SO
FederateAmbassador : : attributeOwner shipAcquisitionNotification,
FederateAmbassador : : requestAttributeOwner shipRel ease,
RTlambassador : : publishObjectClass,
RTlambassador : : subscribeObjectClassAttribute,
RTlambassador: : queryAttributeOwner ship, RTI::AttributeHandleSet

132

RTI 1.0 Programmer’s Guide

3.4.6 Request Attribute Ownership Release +
NAME

requestAttributeOwner shipRelease - inform the federate that another federate has
requested acquisition of one or more attribute ownership tokens held by the federate

HLA INTERFACE SPECIFICATION SERVICE
5.6 - Ownership Management (RTI initiated)

SYNOPSIS
#include <RTI.hh>

virtual
RTI::AttributeHandleSet
&

FederateAmbassador::requestAttributeOwner shipRelease (
RTI::ObjectI D theObject

const RTI::AttributeHandleSet& candidateAttributes
const RTI::UserSuppliedTag theTag

throw (
RTI::ObjectNotK nown,
RTI::AttributeNotK nown,
RTI::Federatel nternalError

)

ARGUMENTS

theObject
object whose attributes the federate is requested to release.

candidateAttributes
set of attributes that the federate is requested to release. The caller maintains
ownership of the storage used by this set; if the federate wishesto retain this
value beyond the termination of the call it should make a copy.

theTag
string value given as an argument to the

RTlambassador : : requestAttributeOwner shipRel ease invocation that
triggered the request. This string can contain a description of the reason for
the acquisition request or any other value that is meaningful for a particular
federation. The caller maintains ownership of the storage used by this
string; if the federate wishes to retain this value beyond the termination of
the call it should make a copy.

DESCRIPTION
This method informs the federate of another federate's interest in acquiring one or
more of the attribute ownership tokensit holds. The federate indicates, viathe
return value of the method, the set of attributes for which it iswilling to relinquish
ownership. If the returned set is non-empty, the acquiring federate will be notified
that it has assumed ownership of the tokens viaits
FederateAmbassador : : attributeOwner shipAcquisitionNotification method. Unlike
assumption of attributes, release of attributes is not subject to further negotiation;
any valid attributes returned by this method are guaranteed to be released to the

133

RTI 1.0 Programmer’s Guide

requesting federate.

A non-empty return set will also trigger a

FederateAmbassador :: attri buteOwner shipDivestitureNotification callback to the
releasing federate. This notification occursimmediately after the
FederateAmbassador : : requestAttributeOwner shipRelease call (unlike most
notifications, it is not queued up for future processing by RTlambassador::tick.)

RETURN VALUES
The method should allocate storage space for the return value on the heap (using the
AttributeHandleSetFactory: : create service); the caller assumes responsibility for the
disposal of this storage.

The return of a non-empty attribute set causes ownership of the returned attributes
to be divested to the requesting federate; the involved federates are notified via
federate ambassador callbacks as described above.

EXCEPTIONS
RTI:: ObjectNotKnown - The object ID specified does not correspond to an object
that has been discovered by the federate.

AttributeNotKnown - One or more of the specified attribute handlesis not vaid in
the context of the specified object or the attribute ownership token is not held by the
federate.

RTI::FederatelnternalError - An error interna to the federate has occurred; this
exception will result in an entry being made to the federate's RTI log.

SEE ALSO
RTlambassador: : requestAttributeOwner shipAcquisition,
FederateAmbassador : : attributeOwner shipAcquisitionNotification,
FederateAmbassador :: attributeOwner shipDivestitureNotification,
RTI:: AttributeHandl eSet

134

RTI 1.0 Programmer’s Guide

3.4.7 Query Attribute Ownership
NAME
quer yAttributeOwner ship, informAttributeOwnership, attributel SOwnedByFeder ate

- determine which federate, if any, holds the attribute ownership token for a given
attribute

HLA INTERFACE SPECIFICATION SERVICE
5.7 - Ownership Management (federate initiated)

(1.0 implements this service as a complimentary pair of methods, one federate-
initiated and one RTI-initiated.)

SYNOPSIS
#include <RTI.hh>

void

RTlambassador::queryAttributeOwner ship (
RTI::ObjectI D theObject
RTI::AttributeHandle theAttribute

throw
RTI::ObjectNotK nown,
RTI::AttributeNotDefined,
RTI::AttributeNotK nown,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

virtual

void

FederateAmbassador ::informAttributeOwner ship (
RTI::ObjectI D theObject
RTI::AttributeHandle theAttribute
RTI::FederateHandle theOwner

throw (
RTI::ObjectNotK nown,
RTI::AttributeNotK nown,
RTI::Federatel nternalError

)

An dternate method is only able to determine if the ownership token is held by the
local federate, but has the advantage of providing aresponse synchronously:

RTI::Boolean

RTlambassador::attributel sOwnedByFederate (
RTI::ObjectI D theObject
RTI::AttributeHandle theAttribute

)

135

RTI 1.0 Programmer’s Guide

throw (
RTI::ObjectNotK nown,
RTI::AttributeNotDefined,
RTI::AttributeNotK nown,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

ARGUMENTS

theObject
object whose attribute ownership status is being queried.

theAttribute
attribute whose ownership status is being queried.

theHandle
federate handle of the federate holding the attribute ownership token.

DESCRIPTION
RTlambassador: : quer yAttributeOwner ship queries the federation in an attempt to
locate the possessor of the specified attribute ownership token. If any federate
holds the token, it will send back a positive acknowledgement which is delivered to
the querying federate in the form of a
FederateAmbassador : :informAttributeOwner ship callback. This notification does
not occur synchronously with respect to the
RTlambassador: : quer yAttributeOwner ship call; the notification (if any) will be
presented upon a subsequent invocation of the RTlambassador::tick service.

There is no negative acknowledgement of attribute ownership, i.e. the querying
federate will not be notified if the query failsto locate the ownership token. Itis
therefore impossible to determine definitively that a given ownership token is not
held by any federate in the federation, as the query response may take an arbitrarily
long time to arrive from the owning federate.

RTlambassador :: attributel SOwnedByFeder ate provides afacility for the federate to
quickly and synchronously determine whether a given ownership token islocaly
held.

Note that an attribute for which afederate has outstanding negotiated divestiture
requestsis still considered to be held by the federate until ownership is assumed by
another federate.

RETURN VALUES
A non-exceptional return from RTlambassador : : quer yAttributeOwner ship indicates
that an attribute ownership query has been sent out to the federation on behalf of the
federate.

A non-exceptional return from FederateAmbassador : :infor mAttributeOwner ship

indicates that the federate understands the ownership information provided by the
federation.

136

RTI 1.0 Programmer’s Guide

RTlambassador :: attributel SOwnedByFederate returns RTI_ TRUE if the specified
ownership token is held by the local federate or RTI_FALSE if the ownership token
is held by another federate, unowned, or no longer exists.

EXCEPTIONS
RTI:: ObjectNotKnown - The specified object handle does not correspond to an
object known by the federate's object manager.

RTI:: AttributeNotDefined - The attribute handleis not valid in the context of the
specified object.

RTI:: AttributeNotKnown - (Not thrownin 1.0.)

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador ::tick.

RTI::SavelnProgress - The attempted action would have resulted in achange in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

RTI::FederatelnternalError - An error interna to the federate has occurred; this
exception will result in an entry being made to the federate's RTI log.

SEE AL SO

RTlambassador: : requestAttributeOwner shipAcquisition,
RTlambassador : : requestAttributeOwner shipDivestiture

137

RTI 1.0 Programmer’s Guide

3.5 Time Management

Table 3-27: Time Management Services
Section Service Title Service
Implemented
6.1 Request Federation Time Yes
6.2 Request LBTS Yes
6.3 Request Federate Time Yes
6.4 Request Minimum Next Event Time Yes
6.5 Set Lookahead Yes
6.6 Request Lookahead Yes
6.7 Time Advance Request Yes
6.8 Next Event Request Yes
6.9 Flush Queue Request Yes
6.10 Time Advance Grant T Yes

138

RTI 1.0 Programmer’s Guide

3.5.1 Request Federation Time

NAME
requestFederationTime - request the current federation time

HLA INTERFACE SPECIFICATION SERVICE
6.1 - Time Management (federate initiated)

SYNOPSIS

RTI::FederationTime

RTlambassador::requestFederationTime ()

throw
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

DESCRIPTION
Federation time for agiven federate is defined as the minimum of the current
federation lower-bound time stamp and the federate's logical time. Thisvalue
represents the maximum time-stamp value that is eligible for delivery to the
federation at this particular instance in time.

RETURN VALUES
The returned vaue is the current federation time, as perceived by the federate.

EXCEPTIONS
RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador ::tick.

RTI::SavelnProgress - The attempted action would have resulted in achange in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
theinterna state of the RTI, which is not permitted during a"'restore" operation.

RTI::RTlinternalError - Aninternal error has occurred in RTI; consult the federate
log file for more details.

SEE AL SO
RTlambassador::requestLBTS, RTlambassador::requestFederateTime,
RTlambassador ::requestMinNextEventTime,
RTlambassador : : timeAdvanceRequest, RTlambassador::tick

139

RTI 1.0 Programmer’s Guide

3.5.2 Request LBTS
NAME

requestLBTS - request the current effective federation lower-bound time stamp
(LBTS) for the federate

HLA INTERFACE SPECIFICATION SERVICE
6.2 - Time Management (federate initiated)

SYNOPSIS

RTI::FederationTime

RTlambassador::requestLBTS ()

throw (
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

DESCRIPTION
The federation LBTS is defined as the minimum time-stamp such that it can be
guaranteed that no federate will generate any more time-stamp-ordered events with a
lower time-stamp. A time-regulating federate's LBTSisits current logical time plus
its current lookahead; a non-time-regulating federate's LBTS is positive infinity, as
it cannot generate any time-stamp-ordered messages. The federation LBTS isthe
minimum of the LBTS's of al participating federates.

Time-stamp ordered messages with atime-stamp lessthan LBTS may still be
gueued for processing, and may therefore be delivered to the federate as aresult of
RTlambassador ::tick invocations; the LBTS simply guarantees that no new
messages with alower-time stamp will be queued for processing (to find out the
absolute minimum time-stamp of all messages eligible for future delivery, use
RTlambassador ::requestMinNextEventTime.)

Non-time-constrained federates cannot receive TSO events, so their effective
federation LBTSisinfinity.

RETURN VALUES
The returned value is the current federation lower-bound time stamp.

EXCEPTIONS
RTI:: FederateNotExecutionMember - The RTI ambassador is not currently

associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador::tick.

RTI::SavelnProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein

140

RTI 1.0 Programmer’s Guide

the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE AL SO

RTlambassador::requestFederationTime, RTlambassador::requestFederateTime,
RTlambassador :: requestMinNextEventTime,

RTlambassador: : timeAdvanceRequest, RTlambassador::tick,

RTlambassador: : turnRegulationOn

141

RTI 1.0 Programmer’s Guide

3.5.3 Request Federate Time
NAME
requestFederateTime - request the current federate logical time

HLA INTERFACE SPECIFICATION SERVICE
6.3 - Time Management (federate initiated)

SYNOPSIS

RTI::FederationTime

RTlambassador::requestFederateTime ()

throw
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

DESCRIPTION
This service alows the federate to obtain its current logical time, i.e. the most recent
time requested by the federate via RTlambassador : : timeAdvanceRequest. If the
federate istime-regulating, itslogical time plusits|ookahead congtitutes the
minimum allowabl e time-stamp of time-stamp-ordered messages subsequently sent
by the federate. If the federateistime-constrained, the logical time represents the
maximum time-stamp of time-stamp-ordered events that will be delivered to the
federate prior to the next time-advance request.

RETURN VALUES
The returned value isthe current federate logical time.

EXCEPTIONS

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador::tick.

RTI::SavelnProgress - The attempted action would have resulted in achange in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
theinterna state of the RTI, which is not permitted during a"'restore” operation.

RTI::RTlinternalError - Aninternal error has occurred in RTI; consult the federate
log file for more details.

SEE AL SO
RTlambassador::requestFederationTime, RTlambassador::requestLBTS,
RTlambassador :: requestMinNextEventTime,
RTlambassador: :timeAdvanceRequest, RTlambassador::tick,
RTlambassador: : turnRegulationOn

142

RTI 1.0 Programmer’s Guide

143

RTI 1.0 Programmer’s Guide

3.5.4 Request Minimum Next Event Time

NAME
requestMinimumNextEventTime - request the minimum possible time-stamp of the
earliest time-stamp-ordered event that will ever be delivered in the federation's
future

HLA INTERFACE SPECIFICATION SERVICE
6.4 - Time Management (federate initiated)

SYNOPSIS

RTI::FederationTime

RTlambassador::requestMinNextEventTime ()

throw
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

DESCRIPTION
The minimum next event time is defined as the largest time-stamp such that RTI can
guarantee that no time-stamp-ordered (TSO) events will be delivered to the federate
with asmaller time-stamp value. Thisis defined as the minimum of the federation
lower-bound time stamp and the time-stamp of the earliest time-stamp-ordered event
(if any) in the federate's event queue. Note that in the case of a non-constrained
federate, thisis alwaysinfinity (i.e. no TSO eventsand an infinite LBTS.) A time
advance grant can never be made to a federation time greater than the minimum next
event time.

RETURN VALUES
Thereturned value is the current minimum next event time for the federate.

EXCEPTIONS
RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador::tick.

RTI::SavelnProgress - The attempted action would have resulted in achange in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
theinterna state of the RTI, which is not permitted during a"'restore” operation.

RTI::RTlinternalError - Aninternal error has occurred in RTI; consult the federate
log file for more details.

SEE AL SO
RTlambassador ::requestFederationTime, RTlambassador::requestLBTS,

144

RTI 1.0 Programmer’s Guide

RTlambassador: : requestFederateTime, RTlambassador : :timeAdvanceRequest,
RTlambassador::tick, RTlambassador: : setTimeConstrained

145

RTI 1.0 Programmer’s Guide

3.5.5 Set Lookahead

NAME
setl.ookahead - redefine the lookahead window for the federate

HLA INTERFACE SPECIFICATION SERVICE
6.5 - Time Management (federate initiated)

SYNOPSIS
void
RTlambassador ::setL ookahead (
RTI::FederationTimeDelta thelL ookahead

throw
RTI::InvalidL ookahead,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

ARGUMENTS
thel_.ookahead
new lookahead value to use for the federate.

DESCRIPTION
This service alows the federate to dynamically modify its lookahead window, i.e.
the amount of time between the federate logical time and the earliest allowable time-
stamp on atime-stamp-ordered (TSO) event generated by the federate. L ookahead
isonly meaningful for time-regulating federates, as non-time-regulating federates
do not generate TSO events. To minimize the overhead associated with
synchronizing federation time advances, federates should make their lookahead
window aslarge asisfeasible.

If the specified lookahead is smaller than the current lookahead, the new lookahead
does not go into effect immediately, as thiswould result in the federate breaking an
earlier "promise" not to generate TSO events before a given federation time. Inthis
case, the federate's actual lookahead is gradually decreased as the federate's logical
timeisincreased (to preserve a constant value of "logical time + lookahead") until it
becomes possible to use the specified |lookahead value. If the specified |ookahead
is greater than the current federation lookahead, it goes into effect immediately.

Obvioudly, lookahead values must be non-negative. A federate's lookahead
defaultsto EPSILON as defined in $RTI_ HOME/include/RTItypes.h.

Time-constrained zero-lookahead federates are an interesting "specia case'; see
RTlambassador : : timeAdvanceRequestAvailable and

RTlambassador : : nextEventRequestAvailable for discussion of special
considerations for such federates.

RETURN VALUES
A non-exceptional return indicates that the federate |ookahead will be adjusted to the

146

RTI 1.0 Programmer’s Guide

specified value as soon as possible.

EXCEPTIONS
RTI::InvalidLookahead - The specified lookahead is less than the minimum
allowable federate |ookahead (zero.)

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador ::tick.

RTI::SavelnProgress - The attempted action would have resulted in achange in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTlambassador: : timeAdvanceRequest,
RTlambassador: : timeAdvanceRequestAvailabl e,
RTlambassador :: requestLookahead, RTlambassador::requestLBTS,
RTlambassador : : nextEventRequest, RTlambassador:: nextEventRequestAvailable

147

RTI 1.0 Programmer’s Guide

3.5.6 Request Lookahead

NAME

requestLookahead - obtain the current lookahead window being used for the
federate

HLA INTERFACE SPECIFICATION SERVICE
6.6 - Time Management (federate initiated)

SYNOPSIS

RTI::FederationTimeDelta

RTlambassador::requestL ookahead ()

throw (
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

DESCRIPTION
This service alows the federate to obtain the value of its effective lookahead, i.e.
the time window between itslogica time and the minimum allowable time-stamp of
atime-stamp-ordered event generated by the federate. The effective lookahead at a
giventimeisat least as great as the current lookahead as specified by the
RTlambassador: : setL ookahead service (see the section on this service for a
discussion of why thisistrue.)

RETURN VALUES
Thereturn valueis the current effective lookahead for the federate.

EXCEPTIONS
RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador::tick.

RTI::SavelnProgress - The attempted action would have resulted in achange in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
theinterna state of the RTI, which is not permitted during a"'restore” operation.

RTI::RTlinternalError - Aninternal error has occurred in RTI; consult the federate
log file for more details.

SEE AL SO
RTlambassador : : timeAdvanceRequest, RTlambassador: : setl ookahead,
RTlambassador::requestFederationTime, RTlambassador::requestFederateTime,
RTlambassador::requestLBTS

148

RTI 1.0 Programmer’s Guide

3.5.7 Time Advance Request

NAME

timeAdvanceRequest - request an advance of the logical time of the federateto a
specified federation time

HLA INTERFACE SPECIFICATION SERVICE
6.7 - Time Management (federate initiated)

SYNOPSIS
void
timeAdvanceRequest (
RTI::FederationTime theTime

throw
RTI::TimeAdvanceAlreadylnProgress,
RTI::FederationTimeAlreadyPassed,
RTI::InvalidFederationTime,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)
A variation is useful for zero-lookahead federates:

void
RTlambassador::timeAdvanceRequestAvailable (
RTI::FederationTime theTime

throw
RTI::TimeAdvanceAlreadylnProgress,
RTI::FederationTimeAlreadyPassed,
RTI::InvalidFederationTime,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

ARGUMENTS
theTime
federation time the federate wishes to advance its logical timeto.

DESCRIPTION
These services allow the federate to request an advanceinitslogical timeto a
specified federation time and arrange to be notified when such an advanceis
achieved, i.e. the RTI can guarantee that all time-stamp-ordered (TSO) events
delivered to the federate in the future will have atime-stamp greater than (or not less
than in the case of RTlambassador ::timeAdvanceRequestAvailable) the new federate
logical time.

149

RTI 1.0 Programmer’s Guide

By requesting atime advance, the federate is agreeing to not generate any time-
stamp-ordered events with atime-stamp less than the requested time plus the current
federate lookahead (for non-time-regulating federates thisistrivial, as such
federates do not generate any time-stamp-ordered events.)

When the criteriafor completion of the time-advance request have been met, the
federate will be notified of such viathe FederateAmbassador : :timeAdvanceGrant
callback. Thefederate may not make atime-advance request while any other time-
advancement serviceisin progress, i.e. the federate iswaiting on a
FederateAmbassador : :timeAdvanceGrant.

For non-time-constrained federates, time advances aretrivial: by definition such
federates do not receive any time-stamp-ordered events, so atime-advance grant is
immediately scheduled for delivery by a subsequent invocation of the
RTlambassador::tick service.

For time-constrained federates, atime-advance is granted when the minimum next
event time (see RTlambassador : : requestMinNextEvent Time) exceeds the requested
federate time. In the case of RTlambassador: :timeAdvanceRequestAvailable, the
time-advance is aso granted if the minimum next event time equal s the requested
time and there are no queued TSO events eligible for delivery to the federate.

The RTlambassador : : timeAdvanceRequestAvailable variation is similar to the
RTlambassador: : timeAdvanceRequest service but does not necessarily deliver all
events at the requested time before issuing the time-advance grant, making it
attractive for zero-lookahead federates that wish to simultaneoudly generate and
process events at the same logical time.

RETURN VALUES
A non-exceptiond return indicates that the federate has successfully initiated the
time-advancement process. TSO events from the current time through the requested
time (inclusive) may now be delivered to the federate, and the federate may no
longer generate TSO events with atime-stamp of less than the requested time plus
the federate lookahead. The federate will receive notification of the successful
completion of the time advance (as described previoudly) viaits
FederateAmbassador : : timeAdvanceGrant callback.

EXCEPTIONS
RTI:: TimeAdvanceAlreadylnProgress - A previous time advance request, next
event request, or flush queue request has not yet been compl eted.

RTI::FederationTimeAlreadyPassed - The requested timeis less than the current
federate logical time.

RTI::InvalidFederationTime - Not thrown in 1.0.

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI

ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador ::tick.

150

RTI 1.0 Programmer’s Guide

RTI::SavelnProgress - The attempted action would have resulted in achange in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE AL SO
FederateAmbassador : :timeAdvanceGrant, RTlambassador::tick,
RTlambassador: :requestFederateTime, RTlambassador::requestLBTS,
RTlambassador :: setTimeConstrained, RTlambassador::turnRegulationOn,
RTlambassador : : nextEventRequest, RTlambassador :: flushQueueRequest

151

RTI 1.0 Programmer’s Guide

3.5.8 Next Event Request

NAME
nextEventRequest, nextEventRequest - advance the federate's logical timeto the
time-stamp of the next TSO event in the federation

HLA INTERFACE SPECIFICATION SERVICE
6.8 - Time Management (federate initiated)

SYNOPSIS
void
nextEventRequest (
RTI::FederationTime theTime

throw
RTI::TimeAdvanceAlreadylnProgress,
RTI::FederationTimeAlreadyPassed,
RTI::InvalidFederationTime,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)
A variation is useful for zero-lookahead federates:

void
nextEventRequestAvailable (
RTI::FederationTime theTime

throw
RTI::TimeAdvanceAlreadylnProgress,
RTI::FederationTimeAlreadyPassed,
RTI::InvalidFederationTime,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

ARGUMENTS
theTime
time to advance the federation logical timeto in the absence of an
intervening TSO event.

DESCRIPTION
These services allow the federate to advance in time to the time-stamp of the next
TSO event occurring in the federation. A FederateAmbassador: : timeAdvanceGrant
will occur after a TSO event has been delivered or the federation lower-bound time
stamp (LBTS) advances past the specified cutoff time; the grant will be to the time-
stamp of the event or the specified cutoff time, respectively. In the interim, any

152

RTI 1.0 Programmer’s Guide

number of receive-ordered events and possibly some TSO events with the same
time-stamp asthe first TSO event will be delivered. The

RTlambassador :: nextEventRequest service defers the time-advance grant until it can
be guaranteed that al TSO events at the grant-time have been delivered; the
RTlambassador : : nextEventRequestAvailable service does not, making it attractive
for zero-lookahead federates that wish to simultaneously generate and process
events at the same logical time.

Notethat if the federate is not time-constrained, the completion criteriaare trivialy
met (i.e. the effective federation LBTS for a non-constrained federate is always
infinity), so atime advance grant to the cutoff time will be immediately scheduled
for delivery by a subsequent invocation of RTlambassador::tick.

RETURN VALUES
A non-exceptional return indicates that the federate has successfully announced its
desire to advance in time; the federate will be notified of the successful completion
of the request (as described above) via a subsequent
FederateAmbassador : : timeAdvanceGrant callback.

EXCEPTIONS
RTI:: TimeAdvanceAlreadylnProgress - A previous time advance request, next
event request, or flush queue request has not yet been compl eted.

RTI::FederationTimeAlreadyPassed - The specified federation time isless than the
current logical time of the federation.

RTI::InvalidFederationTime - Not thrown in 1.0.

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador ::tick.

RTI::SavelnProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
FederateAmbassador : :timeAdvanceGrant, RTlambassador::tick,
RTlambassador: :requestFederateTime, RTlambassador::requestLBTS,
RTlambassador :: setTimeConstrained, RTlambassador::turnRegulationOn,
RTlambassador: : flushQueueRequest, RTlambassador : : timeAdvanceRequest

153

RTI 1.0 Programmer’s Guide

3.5.9 Flush Queue Request

NAME
flushQueueRequest - flush the federate's internal event queues, violating the
ordering of time-stamp-ordered messages if necessary

HLA INTERFACE SPECIFICATION SERVICE
6.9 - Time Management (federate initiated)

SYNOPSIS
void
RTlambassador::flushQueueRequest (
RTI::FederationTime theTime

throw
RTI::TimeAdvanceAlreadylnProgress,
RTI::FederationTimeAlreadyPassed,
RTI::InvalidFederationTime,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

ARGUMENTS
theTime
maximum federate logical time to advance to upon completion of the flush.

DESCRIPTION
This service designates al events currently in the federate's event queue as digible
for presentation to the federate. Subsequent invocations of RTlambassador::tick
will first process any receive-ordered events that have arrived, then will process
eventsin the TSO queue without regard for the federation lower-bound time stamp.
For any given invocation of RTlambassador::tick, the earliest available TSO event
is processed; however, RTI may not be able to guarantee that TSO eventswith a
lower time-stamp will not arrivein the future.

A time advance is granted when the federate has processed all TSO events that were
queued at the time of the request. The grant time is the minimum of the minimum
next event time and the specified cutoff time. Note that thisistrivial in the case of a
non-time-constrained federation, which by definition has no eventsin its TSO
gueue,; in this case, a grant to the specified cutoff time will be made upon the next
invocation of RTlambassador::tick.

RETURN VALUES
A non-exceptional return indicates that the federate has successfully announced its
desire to advance in time; the federate will be notified of the successful completion
of the request via a subsequent FederateAmbassador : :timeAdvanceGrant callback.

EXCEPTIONS

RTI:: TimeAdvanceAlreadylnProgress - A previous time advance request, next
event regquest, or flush queue request has not yet been completed.

154

RTI 1.0 Programmer’s Guide

RTI::FederationTimeAlreadyPassed - The specified federation time isless than the
current logical time of the federation.

RTI::InvalidFederationTime - Not thrown in 1.0.

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador ::tick.

RTI::SavelnProgress - The attempted action would have resulted in achange in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
FederateAmbassador : :timeAdvanceGrant, RTlambassador::tick,
RTlambassador: : requestFederateTime, RTlambassador::requestLBTS,
RTlambassador :: setTimeConstrained, RTlambassador::turnRegulationOn,
RTlambassador: :timeAdvanceRequest, RTlambassador : : nextEventRequest

155

RTI 1.0 Programmer’s Guide

3.5.10 Time Advance Grant +

NAME
timeAdvanceGrant - inform the federate that a previous time advance request, flush
gueue request, or next event request has been completed

HLA INTERFACE SPECIFICATION SERVICE
6.10 - Time Management (RTI initiated)

SYNOPSIS
virtual
void
FederateAmbassador ::timeAdvanceGrant (
RTI::FederationTime theTime

throw (
RTI::InvalidFederationTime,
RTI::TimeAdvanceWasNotl nProgr ess,
RTI::FederationTimeAlreadyPassed,
RTI::Federatel nternalError

)

ARGUMENTS
theTime
time granted to, i.e. the new value of the federate'slogical time.

DESCRIPTION
This callback isinvoked to notify the federate of the successful completion of a
time-advance service (i.e. time advance request, next event request , or flush queue
request.) The specified grant time becomes the new logical time of the federation,
thistimeis guaranteed to be no greater than the federate's minimum next event time
and may be less than this time, depending on the the manner in which the grant was
requested.

Thereceipt of atime advance grant indicatesthat all time-stamp-ordered (TSO)
events with atime-stamp of less than the grant time that will ever occur in the
federation have already been processed by the federate. Only recelve-order events
and TSO events occurring at exactly the grant time will be eligible for processing
until the next invocation of atime-advance service.

Note that non-time-constrained federates have no concept of TSO events, so time
advances are immediately granted to such federates.

RETURN VALUES

A non-exceptional return indicates that the federate understands the time advance
grant notification.

An exceptiona return will cause an entry to be made in the federate's RTI log file;
the logical time of the federateis still considered to have been advanced.

EXCEPTIONS
RTI::InvalidFederationTime - The specified grant timeisinvalid.

156

RTI 1.0 Programmer’s Guide

RTI:: TimeAdvanceWasNotlnProgress - Thereis not an outstanding time advance
request, next event request, or flush queue request.

RTI::FederationTimeAlreadyPassed - The specified grant timeislessthan the
current federate logical time.

RTI::FederatelnternalError - An error internal to the federate has occurred.

SEE AL SO
RTlambassador::tick, RTlambassador::requestFederateTime,
RTlambassador::requestLBTS, RTlambassador:: setTimeConstrained,
RTlambassador: :turnRegulationOn, RTlambassador::timeAdvanceRequest,
RTlambassador : : nextEventRequest, RTlambassador :: flushQueueRequest

157

RTI 1.0 Programmer’s Guide

3.6 Data Distribution Management

Data Distribution Management services are not implemented in the F.0 version of the Run-Time
Infrastructure. The DARPA funded Synthetic Theater of War (STOW) program is devel oping a prototype
RTI specifically focusing on performance and scalability. The results of the STOW RTI DDM experiments
will be incorporated at alater date.

Table 3-28: Data Distribution Management Services
Section Service Title Service Implemented
7.1 Create Update Region No
7.2 Create Subscription Region No
7.3 Associate Update Region No
7.4 Change Thresholds T No
7.5 Modify Region No
7.6 Delete Region No

158

3.7 RTI Support Services

RTI 1.0 Programmer’s Guide

Table 3-29: RTI Support Services

Section Service Title Service Implemented
8.1 Get Object Class Handle Yes
8.2 Get Object Class Name Yes
8.3 Get Attribute Handle Yes
8.4 Get Attribute Name Yes
8.5 Get Interaction Class Handle Yes
8.6 Get Interaction Class Name Yes
8.7 Get Parameter Handle Yes
8.8 Get Parameter Name Yes
8.9 Get Space Handle No
8.10 Get Space Name No
8.11 Set Time Regulating Yes
8.12 Set Time Constrained Yes
8.13 Tick Yes
8.14 dequeuerl FOasynchronoudy Yes

159

RTI 1.0 Programmer’s Guide

3.7.1 Get Handle and Get Name Services

NAME
getFederateName, getFederateHandle, getSpaceName, getJpaceHandle,
getParameterName, getParameterHandle, getlnteractionClassName,
getinteractionClassHandle, getAttributeName, getAttributeHandle,
getObjectClassName, getObjectClassHandle - convert between symbolic (string)
names and RTI handles

HLA INTERFACE SPECIFICATION SERVICE
8.1-8.12 - RTI Support Services (federate initiated)

SYNOPSIS
Methods for conversion to/from object class handles:

RTI::ObjectClassHandle
RTlambassador::getObjectClassHandle (
const RTI::ObjectClassName theName

throw
RTI::NameNotFound,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

RTI::ObjectClassName
RTlambassador::getObjectClassName (
RTI::ObjectClassHandle theHandle

throw
RTI::ObjectClassNotDefined,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

Methods for conversion to/from attribute handles:

RTI::AttributeHandle
RTlambassador::getAttributeHandle (
const RTI::AttributeName theName
RTI::ObjectClassHandle whichClass

throw (
RTI::ObjectClassNotDefined,
RTI::NameNotFound,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,

160

RTI 1.0 Programmer’s Guide

RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

RTI::AttributeName

RTlambassador::getAttributeName (
RTI::AttributeHandle theHandle
RTI::ObjectClassHandle whichClass

throw
RTI::ObjectClassNotDefined,
RTI::AttributeNotDefined,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

Methods for conversion to/from interaction class handles:

RTI::InteractionClassHandle
RTlambassador::getlnteractionClassHandle (
const RTI::InteractionClassName theName

throw
RTI::NameNotFound,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

RTI::InteractionClassName
RTlambassador::getlnteractionClassName (
RTI::InteractionClassHandle theHandle

throw
RTI::InteractionClassNotDefined,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

Methods for conversion to/from parameter handles:

RTI::ParameterHandle

RTlambassador::getParameter Handle (
const RTI::Parameter Name theName
RTI::InteractionClassHandle whichClass

161

RTI 1.0 Programmer’s Guide

throw
RTI::InteractionClassNotDefined,
RTI::NameNotFound,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

RTI::Parameter Name

RTlambassador ::getParameter Name (
RTI::ParameterHandle theHandle
RTI::InteractionClassHandle whichClass

throw (
RTI::InteractionClassNotDefined,
RTI::InteractionParameter NotDefined,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

Methods for conversion to/from space handles (not implemented in 1.0):

RTI::SpaceHandle
RTlambassador ::getSpaceHandle (
const RTI::SpaceName theName

throw
RTI::NameNotFound,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::RTlinternalError,
RTI::UnimplementedService

)

RTI:: SpaceName RTlambassador::getSpaceName (
congt RTI:: SpaceHandle theHandle)
throw (RTI:: SpaceNotDefined,
RTI:: FederateNotExecutionMember,
RTI:: ConcurrentAccessAttempted,
RTI::RTlinternalError,
RTI::UnimplementedService); */

Methods for conversion to/from federate handles (not implemented in 1.0):
RTI::FederateHandle

RTlambassador::getFederateHandle (
const RTI::FederateName theName

)

162

RTI 1.0 Programmer’s Guide

throw (
RTI::FederateDoesNotEXxist,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::RTlinternalError,
RTI::UnimplementedService

)

RTI::FederateName RTlambassador::getFederateName (
RTI::FederateHandle theHandle)
throw (RTI::FederateDoesNotEXist,
RTI:: FederateNotExecutionMember,
RTI:: ConcurrentAccessAttempted,
RTI::RTlinternalError,
RTI::UnimplementedService); */

ARGUMENTS
theName
string specifying the symbolic name to be converted to an RTI-defined
handle. The caller isresponsible for freeing the storage associated with this
string and may do so at itsleisure.

theHandle
RTI class, attribute, interaction, parameter, space, federate handle to be

converted to a symbolic (string) name.

whichClass
object (interaction) class whose attributes (parameters) are being converted.

DESCRIPTION
These methods provide a mechanism for the federate to convert between symbolic
(string) names and RTI-defined handles. The symbolic names are defined by the
federate initidization file, $RTI_CONFIG/[federation name] .fed.

These methods do not ater the internal state of RTI, therefore they may be called
from inside of other RTlambassador methods (such as RTlambassador::tick.)

RETURN VALUES
If the handle or symbolic nameis valid within the context of the current federation

execution, these methods return the appropriate converted value.

If amethod returns a string value, the caller is responsible for freeing the associated
storage and may do so at its leisure.

EXCEPTIONS
RTI:: AttributeNotDefined - The specified attribute handle is not valid in the context

of the specified object class.

RTI:: ConcurrentAccessAttempted - These methods are safe for reentrance into the
RTI ambassador; this exception is not thrown.

RTI::FederateDoesNotEXxist - No federate with the specified federate handle or
federate nameis currently joined in the federation execution.

163

RTI 1.0 Programmer’s Guide

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::InteractionClassNotDefined - The specified interaction class handleis not valid
in the context of the current federation execution.

RTI::InteractionParameter NotDefined - The specified parameter handleis not valid
in the context of the specified interaction class.

RTI::NameNotFound - The symbolic name does not correspond to a handle of the
requested type.

RTI::ObjectClassNotDefined - The specified object class handleis not valid in the
context of the current federation execution.

RTI::SavelnProgress - The attempted action would have resulted in achange in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

RTI:: SpaceNotDefined - The specified space handle is not valid in the context of the
current federation execution.

RTI::UnimplementedService - This service is not implemented in 1.0.
SEE ALSO
RTlambassador: :joinFederationExecution RTI: : AttributeHandleSet,

RTI:: AttributeHandleValuePair Sat, RTI::FederateHandleSet,
RTI:: ParameterHandleValuePair St

164

RTI 1.0 Programmer’s Guide

3.7.2 Set Time Regulating

NAME
turnRegulationOn, turnRegulationOnNow, turnRegulationOff - specify whether or
not the federate wishes to participate in the regulation of federation time

HLA INTERFACE SPECIFICATION SERVICE
8.11 - RTI Support Services (federate initiated)

SYNOPSIS

void

RTlambassador::turnRegulationOn ()

throw
RTI::FederationTimeAlreadyPassed,
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

RTI::FederationTime
RTlambassador::turnRegulationOnNow ()
throw
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

void
RTlambassador::turnRegulationOff ()
throw (
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

DESCRIPTION
These methods allow the federate to specify whether itslogical time should be
considered in the determination of the federation's lower-bound time stamp
(LBTYS), i.e. the greatest time-stamp such that the federation can guarantee that no
time-stamp ordered messages will be delivered with an earlier time-stamp.

RTlambassador: : turnRegul ationOnNow sets the federate's logical timeto the
current federation LBTS before turning time regulation on. If
RTlambassador::turnRegulationOn is used instead, the federate must be sufficiently
advanced in time that it will not generate time-stamp ordered messages that will be
in the federation's past (i.e. the federate'slogical time plusits lookahead must not
be lessthan the federation LBTS.) Note that not all updates and interactions sent by

165

RTI 1.0 Programmer’s Guide

atime-regulating federate are necessarily time-stamp ordered; the ordering is
determined on a per-attribute or per-interaction basis based on the definitionsin the
federation FED file ($RTI_CONFIG/[federation name] .fed) or dynamically
specified by the federate via RTlambassador : : changeAttributeOrder Type or
RTlambassador: : changel nteractionOrder Type.

If afederate is not time-regulating, itslogical time will not be considered in the
determination of the federation LBTS, and al updates and interactions sent by the
federate will be processed receive-order, regardless of their individual ordering
policies.

RETURN VALUES
A non-exceptiona return indicates that the federate has successfully indicated its
desire to participate or not participate in the regulation of federation time.

RTI::RTlambassador: : turnRegul ationOnNow returns the new federate logical time,
i.e. the current value of the federation's lower-bound time stamp.

By default, federates are not time regulating.

EXCEPTIONS
RTI::FederationTimeAlreadyPassed - The federate cannot turn time regulation on
because it would be possible for it to generate time-stamp ordered messagesin the
federation's past; it must advance in time, use
RTlambassador: : turnRegul ationOnNow instead, or specify a greater |ookahead.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador::tick.

RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::SavelnProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTlambassador: : changeAttributeOrder Type,
RTlambassador: : changel nteractionOrder Type,
RTlambassador :: setTimeConstrained, RTlambassador::requestLBTS,
RTlambassador: : requestFederateTime, RTlambassador :: setl ookahead,
RTlambassador :: requestLookahead, RTlambassador::timeAdvanceRequest

166

RTI 1.0 Programmer’s Guide

3.7.3 Set Time Constrained
NAME

setTimeConstrained - specify whether or not the federate wishes to receive
updates/interactions in time-stamped order

HLA INTERFACE SPECIFICATION SERVICE
8.12 - RTI Support Services (federate initiated)

SYNOPSIS
void
RTlambassador::setTimeConstrained (
RTI::Boolean state

throw
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

ARGUMENTS
Sate
whether or not the federate wishes to be time constrained.

DESCRIPTION
This method allows the federate to dynamically specify whether or not RTI should
take time into consideration when determining when to present eventsto the
federation. If afederateisnot time-constrained, al incoming events are processed
in receive-order, i.e. they areimmediately made available for processing by an
RTlambassador::tick service cal. Eventsonly become eligible for presentation to a
time constrained federate when it can be guaranteed that no time-stamp-ordered
events with alower time-stamp will be received. Thisordering only appliesto
eventsthat are designated by the sender as being time-stamp-ordered; events
designated as receive-ordered will always be made eligible for presentation
immediately.

Turning time constraints on affects only events received subsequently; it does not

affect any time-stamp-ordered events that may have already been received and
placed in the receive-order queue.

Federates are non-time-constrained by default.

RETURN VALUES
A non-exceptional return indicates that the federate's time constraints have been
turned on or off as requested.

EXCEPTIONS
RTI: : FederationExecutionDoesNotExist - The RTI does not have afederation
executive registered for the given federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the

167

RTI 1.0 Programmer’s Guide

RTlambassador; most likely caused by a call to an RTI ambassador method from
inside a FederateAmbassador callback method invoked by RTlambassador ::tick.

RTI::SavelnProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE AL SO
RTlambassador : : changeAttributeOrder Type,
RTlambassador: : changel nteractionOrder Type, RTlambassador: :turnRegulationOn,
RTlambassador::tick, RTlambassador: : timeAdvanceRequest

168

RTI 1.0 Programmer’s Guide

3.7.4 Tick

NAME
tick - turn control over to RTI for abrief time to do interna processing and provide
one natification to the federate ambassador

HLA INTERFACE SPECIFICATION SERVICE
8.13 - RTI Support Services (federate initiated)

SYNOPSIS
RTI::Boolean
tick ()
throw (
RTI::SpecifiedSavel abelDoesNotEXxist,
RTI::ConcurrentAccessAttempted,
RTI::RTlinternalError

)

A variation allows the federate to specify the amount of (wallclock) time to be
consumed by thetick:

RTI::Boolean

tick (

RTI::TickTime minimum
RTI::TickTime maximum

throw (
RTI::SpecifiedSavel abelDoesNotEXxist,
RTI::ConcurrentAccessAttempted,
RTI::RTlinternalError

)

ARGUMENTS
minimum
minimum amount of time to be consumed by the tick.

maximum
maximum amount of time to be consumed by the tick.

DESCRIPTION
Most callbacks made to the federate ambassador are stimulated by this service; most
invocations of RTlambassador::tick will result in one notification being delivered to
the federate (some may result in zero or more than one.) These notifications may be
the result of messages received from remote federates or may be bookkeeping
notifications queued by the local federate's RTI ambassador. Even if the federate
does not expect to receive any notifications, it isimportant to tick RTI periodically
to alow it to perform internal bookkeeping functions (e.g. draining incoming
buffers, sending out periodic Management Object Model updates, etc.)

If the federate is not time-constrained, RTI events (i.e. updates, interactions, and
deletions) will be delivered to the federate as soon as possible. If the federateis
time-constrained, events will be delivered while atime-advancement service (e.g.
RTlambassador :: nextEventRequest) isin progress. Time-constrained federates can

169

RTI 1.0 Programmer’s Guide

also elect to process receive-ordered events outside of atime-advancement service
by using the RTlambassador : : dequeueF 1 FOasynchronously service.

If the federate provides a minimum and maximum time value, RTlambassador ::tick
will block for atime no less than minimum and no greater than maximum seconds.
This method of suspending execution is preferable to signal-based mechanisms and
deeps, asit alows RTI to continue processing in the meantime.

RTI ambassador functions, with the exception of the handful or reentrant support
functions, may not be invoked from within callbacks triggered by
RTlambassador::tick; such an attempt will result in an

RTI:: ConcurrentAccessAttempted exception.

RETURN VALUES
A non-exceptiona return indicates that RTI is most appreciative of being given the
opportunity to perform its necessary functions, and has possibly delivered one or
more notifications to the federate via the federate ambassador.

EXCEPTIONS
RTI:: SoecifiedSavelabel DoesNotEXist - The specified save label does not
correspond to an existing labelled saved state.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador ::tick.

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
FederateAmbassador: : timeAdvanceGrant, RTlambassador : : updateAttributeVal ues,
FederateAmbassador : : discover Object, FederateAmbassador::removeObject,
FederateAmbassador : : receivel nteraction, RTlambassador: :joinFederationExecution,
RTlambassador: : dequeuer | FOasynchronoudy

170

RTI 1.0 Programmer’s Guide

3.7.5 dequeueFI FOasynchronously
NAME
dequeueF 1 FOasynchronoudly - specify whether or not the federate wishesto

process receive-order events when no outstanding time-advance serviceisin
progress

HLA INTERFACE SPECIFICATION SERVICE
8.14 - RTI Support Services (federate initiated)

SYNOPSIS
#include <RTI.hh>

void
dequeueFI FOasynchronously (
RTI::Boolean theSwitch

throw
RTI::FederateNotExecutionM ember,
RTI::ConcurrentAccessAttempted,
RTI::Savel nProgress,
RTI::RestorelnProgress,
RTI::RTlinternalError

)

DESCRIPTION
This service allows the federate to specify whether or not it wishes to process
receive-ordered events in the absence of an outstanding time-advance service. This
isonly meaningful for time-constrained federates, as non-time-constrained federates
alway's process events as soon as possible.

A true setting will result in receive-ordered events being delivered to the federate as
soon as possible in response to aRTlambassador ::tick invocation. A false setting
(the default) will result in receive-ordered events being queued until the federate
initiates a time-advancement service (e.g. RTlambassador ::timeAdvanceRequest.)

RETURN VALUES

A non-exceptional return value indicates that the federate has reset its asynchronous
dequeue preference.

EXCEPTIONS
RTI:: FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI:: ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by acall to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTlambassador::tick.

RTI::SavelnProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a"save" operation.

RTI::RestorelnProgress - The attempted action would have resulted in achangein
the internal state of the RTI, which is not permitted during a"'restore" operation.

171

RTI 1.0 Programmer’s Guide

RTI::RTlinternalError - An interna error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTlambassador:: setTimeConstrained, RTlambassador::tick,
RTlambassador : : timeAdvanceRequest

4. Programming with the RTI

This section will take you through examples of applications using the 1.0 RTI. The source code to each of
the examples can be found in $RTI_HOME/demo. The Hello World and Jager applications have been
developed to aid in understanding and using the 1.0 RTI.

4.1 Hello World

The Hello World application isasimple HLA federate that simulates an increase in population over time.
It registers one instance of the HLA object class Country and updates its name and popul ation attributes as
they change over time. To be true to its name Hello World periodically sends an interaction of type
Communication. This communication causes all receiving federates to print the message (“Hello World!")
to standard output. Thistutorial describes the Hello World SOM and FOM, the Federation Execution Data,
how to run the federate, and the source code that relatesto using the RTI. Each of the HLA servicesused in
Hello World islisted in Table 4-4-1: HLA Services Used in Hello World.

Table 4-4-1: HLA Services Used in Hello World

Federation Declaration Object Time Owner ship
M anagement M anagement M anagement M anagement M anagement
CreateFederation PublishObjectClass Reguestld TimeAdvanceRequest
JoinFederation PublishinteractionClass RegisterObject TimeAdvanceGrant
ResignFederation SubscribeObjectClassAttribute UpdateAttributeValues

DestroyFederation

Subscribel nteractionClass

DiscoverObject

ControlUpdates

ReflectAttributeValues

Control I nteractions

Sendl nteraction

Receivel nteraction

DeleteObject

RemoveObj ect

4.1.1 Simulation Object Model (SOM)

The SOM describes the public data that an application can communicate to the Run-Time Infrastructure.
The Hello World SOM has one object class Country and one interaction class Communication. Table 4-4-
2: Hello World Object Class Structure shows the OMT Object Class Structure table for the Hello World

Federation.

Table 4-4-2: Hello World Object Class Structure

Object Class Structure Table

Country (PS)

172

RTI 1.0 Programmer’s Guide

The Communication interaction isinitiated by the locally simulated Country object in each federate and is
received by all other federate. The OMT Interaction table is shown in Table 4-4-3: Hello World Object
Interaction Table.

Table 4-4-3: Hello World Object Interaction Table

Interaction Initiating Object Receiving Object Interaction Init/ Sense/
Structure Parameters React
Class Affected Class Affected
Attributes Attributes
Communication Country None Country | None Message

The data communicated between federates in the Hello World federation is described in Table 4-4-4: Hello
World Attribute/Parameter Table. The Country object class has attributes for the name and the population
of the country. The Communication interaction class has one parameter that stores the message being
communicated.

Table 4-4-4: Hello World Attribute/Parameter Table

Object/Interaction Attribute/Parameter Data-type | Cardinality | Units

Country Name string 1 None
Population double 1 None

Communication Message string 1 None

As defined in the Object Model Template, the Data Structure and Enumeration tables are part of the
Attribute/Parameter table. However, since the Hello World federate does not use enumerations or complex
types they are not depicted here.

4.1.2 Federation Object Model (FOM)

The FOM is the subset of each SOM that will participate in a given federation. Since the Hello World
federation is comprised of only Hello World federates, the FOM isthe same as the Hello World SOM.

4.1.3 Federation Execution Data (FED)

The Federation Execution Data (FED) specifies the FOM object & interaction class hierarchies and the
attributes and parameters at each level. The transport and ordering for object attributes and interaction
classes are also specified. The FED for Hello World is shown in Figure 4-8: Hello World Federation
Execution Data (FED). The FED must be consistent across an entire federation. Users should take special
care to ensure that the same FED fileis being used by each federate since changes in attribute/parameter or
class orders will cause an inconsistent run-time enumeration of these types.

(fed
(objects
(class Country
(attribute Name FED_BEST_EFFORT FED_RECEIVE)
(attribute Population FED_BEST_EFFORT FED_RECEIVE)
)

173

RTI 1.0 Programmer’s Guide

)

(interactions
(class Communication FED RELIABLE FED_RECEIVE
(parameter Message)
)
)
)

Figure 4-8: Hello World Federation Execution Data (FED)

Note: The MOM object and interaction classes have been omitted from this figure for simplicity. MOM
classes must be in the FED file; otherwise, an exception will occur.

4.1.4 Running the Application

The Hello World application takes two command line arguments that specify the name of the federate’s
locally simulated Country object and theinitial value of the Country’ s population attribute. In addition, a
third argument can be provided to limit the number of cycles the simulation event loop will perform. See
Figure 4-9: Hello World: Sample Output of the Application.

> hel | oWrld
usage: helloWwrld <Country Name> <Initial Popul ation> [<Nunber of Cycl es>]

> helloWrld US 100 20

hel | oWrl d: Federate Handle = 1

Start updates for unknown cl ass: 3
Start interaction for unknown class: 4
Turni ng Country. Name Updat es O\

Turni ng Country. Popul ati on Updates O\
Tur ni ng Communi cation I nteractions ON
Country[O] Nane: Popul ation: 100
Country[O] Nane: Popul ation: 101
Country[O] Nane: Popul ation: 102.01
Country[0] Nane: Popul ati on: 103. 03
Country[0] Nane: Popul ation: 104. 06
Country[O] Nane: Popul ation: 105. 101
Country[0] Nane: Popul ation: 106. 152
Country[O] Nane: Popul ation: 107.214
Country[O] Nane: Popul ation: 108. 286
Country[0] Nane: Popul ati on: 109. 369
Country[0] Nane: Popul ation: 110. 462
Country[0] Nane: Popul ation: 111.567
Country[0] Nane: Popul ation: 112. 683
Country[O] Nane: Popul ation: 113. 809
Country[O] Nane: Popul ation: 114.947
Country[0] Nane: Popul ati on: 116. 097
Country[0] Nane: Popul ation: 117.258
Country[0] Nane: Popul ation: 118.43
Country[O] Nane: Popul ation: 119. 615
Country[O] Nane: Popul ation: 120. 811
Exi ti ng hel | oVr |

bbb 0060000

o

Figure 4-9: Hello World: Sample Output of the Application

174

RTI 1.0 Programmer’s Guide

4.1.5 Stepping Through the Application

This section will take you through the Hello World C++ source code which is comprised of three source
(.cc) files and two header (.hh) files. Hello World defines one federate specific class that contains the
majority of the code to model and maintain the state of all instances of Country class. Thisclassis defined
in Country.hh and implemented in Country.cc. The FederateAmbassador has been sub-classed to provide
the RTI with a mechanism to invoke RTI initiated services on the HelloWorld federate. Thisclassis
defined in HwFederateAmbassador.hh and is implemented in HwFederateAmbassador.cc. The file
helloWorld.cc contains the main() routine and is where the federate’ s event loop islocated. It isdescribed in
the following paragraphs.

4.1.5.1 Instantiating the RTI Objects

The RTI objects that provide the interface for the RTI and the federate must be instantiated to participate in
an HLA federation execution. The RTI Ambassador is the interface the federate uses to invoke the HLA
services. The Federate Ambassador is the interface the RTI uses to inform the federate of responses to
requests as well as object attribute updates and interactions from remote federates. See Figure 4-10:
HelloWorld: Initializing the RTI Objects for

try
{

/1 Oreate RTlI objects

/1 The federate communicates to the RTl through the RTI anbassador
/1 object and the RTI communicates back to the federate through
/1 the Federat eAnrbassador obj ect.

R e
RTI : : RTI anbassador rti Anb; /1 1ibRTl provided
HaFeder at eAnrbassador f edAnb; /1 User-defined
}
catch (RTl::Exception& e)
{
cerr << "Error:" << & << endl;
return -1,
}

Figure 4-10: HelloWorld: Initializing the RTI Objects
4.1.5.2 Creating the Federation Execution

Once the RTI objects are instantiated, a federation execution must be created that a group of federates can
join to participate in a distributed simulation. This service will attempt to register the named federation
execution with the RTI Executive (rtiexec). Figure 4-11: HellowWorld: Creating the Federation Execution
shows the source code invoking this service. Note: The 1.0 RTI requires that the RTI executive be running
on awell known host on awell known port. The 1.0 library (IibRTI) consults the RTI.rid file located in
the directory specified by the RTI_CONFIG environment variable to determine the name of the host the
RTI executive process runs on and the port it communicates through.

175

RTI 1.0 Programmer’s Guide

When afederate creates the federation execution, the $RTI_HOME/bin/fedex.sh process is executed on the
localhost. The RTI_HOME environment variable must be set to the root of the RTI 1.0 distribution tree in
the federate environment to allow the federate to execute the fedex process.

Note: Each federation execution must have a unique name. Thiswill be apparent when the Join Federation
Execution serviceis viewed.

try
{

/1 A successful createFederati onExecution will cause

/1 the fedex process to be executed on this nmachine.

R R R T
rti Anb. creat eFeder at i onExecuti on(fedExecNane);

i:at ch (RTI:: FederationExecutionA readyExi sts& e)

{ cerr << "Note: Federation execution already exists." << & << endl;
iatch (RTI::Exception& e)

{ cerr << "Error:" << & << endl;

}

Figure 4-11: HelloWorld: Creating the Federation Execution
4.1.5.3 Joining the Federation Execution

A federate must join an existing federation execution to participate in the distributed simulation. Invocation
of this service will cause the RTlambassador to establish communication channels with the named
federation execution. catch (RTI::FederateAlreadyExecutionMember& €)

{

cerr <<"Error: " << nyCountry->Cet Nane()

<< " already exists in the Federati on Execution "

<< fedExecNane << "." << endl;
cerr << & << endl;
return -1;
}
catch (RTI:: Federati onExecut i onDoesNot Exi st & €)
{
cerr << "Error: " << fedExecNane << " Federation Execution "
<< "does not exists."<< endl;
cerr << & << endl;
return -1;
}
catch (RTI:: GCoul dNot QpenFED& €)
{
cerr << "Error: The FED file $RTI_OCONFIG " << fedExecName << ".fed"
<< "coul d not be opened."
<< endl;
cerr << & << endl;
return -1;
}
catch (RTI:: Error Readi ngFED& e)
{

cerr << "Error: The FED file $RTI_CONFIG " << fedExecNane << ".fed"

176

RTI 1.0 Programmer’s Guide

<< "can not be properly read - please check the format."

<< endl;

cerr << & << endl;

return -1;
}
catch (RTl:: Exception& e)
{

cerr << "BError:" << & << endl;
}

Figure 4-12: HelloWorld: Joining a Federation Execution shows the source code that invokes this service.

Note: A <Federation Execution Name>.fed file must exist in the directory specified by the RTI_CONFIG
environment variable. This file contains FOM information giving the object and interaction class
structures and attribute/parameter names. Additionally, default attribute and interaction transport and
ordering information is given. For a more complete description of the FED, see 2.4.2 Federation Execution
Data (FED).

try
{
federateld = rti Anb. j oi nFeder ati onExecuti on(nyCount ry->Get Nane(),
f edExecNane,
&f edAb) ;
}
catch (RTI:: Federat eAl r eadyExecut i onMenber & e)
{
cerr << "Error: " << nyCountry->Get Nane()
<< " already exists in the Federati on Execution "
<< fedExecNane << "." << endl;
cerr << & << endl;
return -1;
}
catch (RTI:: Federati onExecut i onDoesNot Exi st & €)
{
cerr << "Error: " << fedExecNane << " Federation Execution "
<< "does not exists."<< endl;
cerr << & << endl;
return -1;
}
catch (RTI:: GCoul dNot QpenFED& €)
{
cerr << "Error: The FED file $RTI_OCONFIG " << fedExecName << ".fed"
<< "coul d not be opened."
<< endl;
cerr << & << endl;
return -1;
}
catch (RTI:: Error Readi ngFED& €)
{
cerr << "Error: The FED file $RTI_CONFIG " << fedExecNane << ".fed"
<< "can not be properly read - please check the fornat."
<< endl;
cerr << & << endl;
return -1;
}
catch (RTI:: Exception& e)
{

cerr << "Error:" << & << endl;

177

RTI 1.0 Programmer’s Guide

Figure 4-12: HelloWorld: Joining a Federation Execution
4.1.5.4 Setting Time Management

Thisversion of Hello World allows each HelloWorld federate to progressin time asfast asit possibly can.
The setTimeConstrained() service toggles whether or not the federate’ s time advancement is constrained by
other federates' time and TSO queue. The turnRegulationOff() service informs the RTI that the federate's
time and TSO queue do not have to be considered by other federates' time advancement. See Figure 4-13:
HelloWorld: Setting Time Management.

/1 Set the Time Managenent paraneters:

/1 This version of Hell oWrld operates under wall-cl ock

// tinme (under its own control). This means that it should
/1 not be constrained or regul ating.

try

rti Anb. set Ti neConstrai ned(RTI::RTI _FALSE);
rti Amb. turnRegul ati onO f ();

}
catch (RTl:: Exception& e)
{
cerr << "Error:" << & << endl;
}

Figure 4-13: HelloWorld: Setting Time Management
4.1.5.5 Run-Time Type Identification

1.0 does not know anything about a federate’s data; therefore, it uses a Meta Object Protocol MOP to
enumerate the types at run-time. Since the handles assigned to object and interaction classes, attributes, and
parameters are defined at run-time, the application developer must use the RTI ancillary servicesto retrieve
these run-time handles.

The Country::Init() method queries the RTI for the handles assigned to its object and interaction classes,
attributes, and parameters. The 1.0 RTI will consistently generate the same handles for the same FED
input file; however, this should not be relied upon during coding. (This means do not hard code values for
the ObjectClassHandle, AttributeHandle, InteractionClassHandle, or ParameterHandle) Figure 4-14:
HellowWorld: Run-Time Type Identification Example shows the use of the RTI servicesthat query the RTTI
values for FED data.

Note: There are better ways to perform the mapping between the RTI RTTI and the simulation’s compile
time types. Seethe Jager tutorial for one approach.

void Country::Init(RTI::RTlanbassador* rti Anb)

{
ns_rti Amb = rti Anb;

if (ms_rtiAm)

178

RTI 1.0 Programmer’s Guide

{
e R T
// Get the RTTI (Meta-Chject Protocol MP) handl es
11
/1 Since the 1.0 RTl does not know anythi ng about your data
/1 and thus uses Run-Time Type ldentification we nmust ask the
/! RTl what to call each of our data types.
e R T
ns_countryTypeld = ns_rti Anb- >get (bj ect A assHandl e(ns_countryTypeStr);
ns_naneTypel d = ns_rti Anb->get Attri but eHandl e(ns_nameTypeStr,
ns_count ryTypel d) ;
ms_popTypel d = ns_rti Anb->get Attri but eHandl e(ns_popTypeStr,
ns_count ryTypel d) ;
}

Figure 4-14: HelloWorld: Run-Time Type lIdentification Example
4.1.5.6 Publishing and Subscribing to Classes of Data

The federate needsto tell the RTI the types of object class attributes and interaction classes it can produce
and would like to receive. Inthe Hello World program al data types that are published are also instantiated
and updated.

Note: Each time an object or interaction class is subscribed or published it replaces the
subscription/publication for that class. In most reasonable applications the publication and subscription
would be broken up into two different methods. Figure 4-15: HelloWorld: Publication and Subscription
Example shows the usage of the RT| publication and subscription services.

void Country: : Publ i shAndSubscri be()

{
if (ms_rtiAnb)
{

/1 To actual ly subscribe and publish we need to build

/1 an AttributeHandl eSet that contains a list of

/1l attribute type ids (AttributeHandl e).

I e e

RTI:: Attribut eHandl eSet *countryAttri butes;

countryAttributes = RTI:: AttributeHandl eSet Factory: : create(2);

countryAttribut es->add(ns_naneTypeld);
countryAttribut es->add(ns_popTypeld);

R e
/1 1 like to subscribe first because, in 1.0 RTlI, publish
/1 causes an i medi ate Control Updat es service request

// and | like to keep as few events in the queue (waiting
/1 for tick) as possible for as little time as possible.
R

ms_rti Anb- >subscri beChj ect d assAttribute(ns_countryTypel d,
*countryAttributes);
ns_rti Anb- >publ i shCbj ect A ass(ns_count ryTypel d,
*countryAttributes);

countryAttri butes->enpty();

179

RTI 1.0 Programmer’s Guide

del ete countryAttri butes; // Deallocate the menory
e
/1l Same as above for interactions
R

I/l Get RTTI info
ns_commlypel d
ns_comivkgTypel d

ns_rti Anb->get | nteracti ond assHandl e(nms_conmlypeStr);
ns_rti Anb- >get Par arret er Handl e(ns_commisgTypeStr,
nms_comypel d) ;

/l Declare ny Interaction interests
nms_rti Anb- >subscri bel nt eracti ond ass(ns_connilypeld);
ns_rti Anb->publ i shlnteracti onQ ass(ns_conmiypel d);

Figure 4-15: HelloWorld: Publication and Subscription Example
4.1.5.7 Instantiating HLA Objects

Each Hello World federate creates one HLA object instance of class Country and registersit with the RTI.
The Country::Country() constructor method does not perform the id request and registerObject request since
Country objects are also instantiated upon discovery. Figure 4-16: Helloworld: Instantiation of HLA
Objects shows the usage of the Request ID and Register Object services.

voi d Country: : Register()

{
if (mrtiAnb)
{
e
// Instantiate ny country object then register it with
/1l the RTI. Registering an object with the RTI allows
/1 the object to be discovered by other federates in the
/1 federation execution.
/1
/1 Note: Discovery happens after an object is registered
I/ and the subscribed attributes are updat ed.
I e e
RTI : : bj ect | Dcount nunChj ect s(1) ;
m rti Anb- >request | D nun(hj ects, minstanceld, minstanceld);
mrti Anb- >regi ster (oj ect (this->GetCountryRild(),
m.instanceld);
}
}

Figure 4-16: HelloWorld: Instantiation of HLA Objects
4.1.5.8 Simulation Event Loop

The Hello World simulation cycles through the event loop the number of times specified in the command
line arguments. In each cycle the federate requests a time advance, ticks the RTI until the time advanceis

180

RTI 1.0 Programmer’s Guide

granted, and then prints the current state of all known Country objects and updates the local Country
object’ s state based on the time advance granted.

4.1.5.8.1 Advancing Time

The HelloWorld federate uses the timeAdvanceRequest() service. This service will provide afull grant to
the requested time. Figure 4-17: HelloWorld: Time Advance Request Example shows the usage for the
timeAdvanceRequest() service.

int counter = 0;

whil e (counter++ < nunmer & Ti cks)

{

/1

/1 Advance to next time step (next year), then calculate the
/1 new popul ati on.

/1

// The RTI will asynchronously grant a tine advance to us and
// it may or may not be the entire tinme step we asked for.
/1 This depends on the ordering specified in the RD and the
/1l tinme advance service used. Since this version of

/] Hello Wrld uses timeAdvanceGant it will be the entire
// tinme step we asked for. Cher tine advance nethods such
/1 next Event Request may gi ve i ncremental grants.

try
{
ti meAdv@ ant = RTI:: RTlI _FALSE;

rti Anb. ti meAdvanceRequest (currentTime + tinmeStep);

}
catch (RTl::Exception& e)
{
cerr << "Error:" << & << endl;
}

Figure 4-17: HelloWorld: Time Advance Request Example
4.1.5.8.2 Ticking the RTI

Invoking the RTlambassador::tick() method is how the federate turns control over to the RTI to perform
internal synchronization operations and to invoke the RTI initiated services on the FederateAmbassador.
This section has several subsections that describe the HwFederateA mbassador methods that are implemented
in the Hello World application.

The RTlambassador::tick() method processes the next event in the RTI's internal queue and returns
RTI::RTI_TRUE if additional events exist that need to be processed. Figure 4-18: HellowWorld: Providing
Control to the RTI shows the RTlambassdor::tick() method being used such that all available events are
processed (not just one).

while (!'tineAdv@ ant)
{

181

RTI 1.0 Programmer’s Guide

/1

// Tick will turn control over to the RTI so that it can

Il process an event. This will cause an invocation of one
/1 of the federateAnbassador Servi ces net hods.

Il

/] Be sure not to invoke the RTlIanbassador Services fromthe
/1 federat eAnbassador Servi ces; otherw se, a Concurrent Access
/1 exception will be thrown.

/1

i nt eventsToProcess = RTl:: RTl _TRUE

whil e (event sToProcess)

{
}

event sToProcess = rti Anb.tick();

Figure 4-18: HelloWorld: Providing Control to the RTI
4.1.5.8.2.1 Control Updates

The Control Updates service allows the RTI to inform the federate when an object class the federate
published is needed or is not needed by the federation. This allows the federate to only send attribute
updates to the RTI when the federation requires them.

When the RTI invokes this service on the Hello World federate, the application sets aflag for each attribute
to the appropriate value. During the Country object’s update method, these flags are checked to make sure
the federation needs the data. Figure 4-19: HelloWorld: Control Updates Example shows the usage for this
service.

Note: Control Updates is hard-wired in 1.0 such that the RTI tells every federate to update all classes it
publishes.

voi d HwFeder at eAnbassador:: start Updat es((hjectdassHandl e thed ass,
const AttributeHandl eSet & theAttri butes)
t hrow (RTI: : Cbj ect A assNot Publ i shed,
RTI:: Attribut eNot Publ i shed,
RTl : : Feder at el nternal Error)

{
R LT T
Il Gets called imediately in 1.0 for all classes you publish.
e R LR T
if (thedass == Country:: GetCountryRild())
{
Country:: Set Updat eControl (RTI:: RTI _TRUE, theAttributes);
}
el se
{
cerr << "Start updates for unknown class: " << thed ass << endl;
}
}

voi d HwFeder at eAnmbassador: : st opUpdat es((hj ect d assHandl e thed ass,
const AttributeHandl eSet & theAttri butes)

182

RTI 1.0 Programmer’s Guide

throw (RTI : : Cbj ect d assNot Publ i shed,
RTI:: Attri but eNot Publ i shed,
RTl : : Federatel nternal Error)

{
e
/1 Never gets called in 1.0 but we will inplenent it for good form
R LT T
if (thedass == Country:: GetCountryRild())
{
Country: : Set Updat eControl (RTI:: RTI_FALSE, theAttributes);
}
el se
{
cerr << "Stop updates for unknown class: " << thed ass << endl;
}
}

void Country:: Set Updat eControl (RTl::Bool ean status,
const RTI::AttributeHandl eSet & theAttrHandl es)

{
e R LR T
/1 Note: This is hard-wired in 1.0 - meaning all things a
/1 federate publishes will cause a start control update.
e R R
RTI:: Attri buteHandl e attrHandl e;
e R LR T

/1 W need to iterate through the AttributeHandl eSet
/] to extract each AttributeHandl e. Based on the type
/1l specified (the value returned by getHandl e()) we need to
/1l set the status of whether we shoul d send this type of data.
e e T
for (int i =0; i <theAttrHandl es.size(); i++)
{
attrHandl e = theAttrHandl es. getHandl e(i);
if (attrHandl e == Country:: GetPopul ati onRtild())
{
/1 Turn popul ation updates on/ of f
ns_sendPopul ati onAttr Updat es = stat us;

char *pStr = ns_sendPopul ationAttrUpdates ? "ON' : "CFF';

cout << "Turning Country. Popul ati on Updates "
< pStr << "." << endl;

}
else if (attrHandle == Country:: GetNanmeRild())
{

// Turn nane updates on/ of f
ns_sendNaneAt t r Updat es = st at us;

char *pStr = ns_sendNaneAttrUpdates ? "ON' . "CFF";

cout << "Turning Country.Nane Updat es
<< pStr << "." << endl;

183

RTI 1.0 Programmer’s Guide

Figure 4-19: HelloWorld: Control Updates Example
4.1.5.8.2.2 Control Interactions

The Control Interactions service allows the RTI to inform the federate when an interaction class the federate
published is needed or is not needed by the federation. This allows the federate to only send interactions to
the RTI when the federation requires them.

When the RTI invokes this service on the Hello World federate, the application sets a flag for each
interaction class to the appropriate value. During the Country object’s update method, these flags are
checked to make sure the federation needs the data. Figure 4-20: HelloWorld: Control Interactions Example
shows the usage for this service.

Note: Control Interactionsis hard-wired in 1.0 such that the RTI tells every federate to send all interaction
classesit publishes.

voi d HwFeder at eAnbassador::startlnteractionGeneration
(I nteracti ond assHandl e thed ass)
throw (RTI:: Interactiond assNot Publ i shed,
RTl : : Feder at el nternal Error)

{
R R R e LR
/1l Gets called imediately in 1.0 for all classes you publish.
e R R
Country::SetlnteractionControl (RTI::RTI_TRUE, thed ass);

}

voi d HwFeder at eAmbassador::stoplnteracti onGeneration
(I nteracti ond assHandl e thed ass)
throw (RTI:: I nteracti ond assNot Publ i shed,
RTl : : Federat el nternal Error)

{
e R R
/1 Never gets called in 1.0 but we will inplenent it for good form
L R LT TR
Country::SetlnteractionControl (RTI::RTI _FALSE, thed ass);

}

void Country:: SetlnteractionControl (RTl::Bool ean status,
RTI:: I nteracti ond assHandl e thed ass)
{
if (thedass == Country:: GetCommRild())
{
/!l Set a flag here so that | can tell whether I
/1 need to send an interaction of this type.
ms_sendConmi nt eracti ons = st at us;

char *pStr = ns_sendCommi nteractions ? "QON' : "COFF";

cout << "Turni ng Communi cation Interactions "
<< pStr << "." << endl;

}

el se

{

184

RTI 1.0 Programmer’s Guide

/1 1f it gets this far | don't know this type of interaction
/1 better |et someone know

char *pStr = status ? "Start" : "Stop";
cerr << pStr
<< " interaction for unknown class: " << thed ass << endl;

Figure 4-20: HelloWorld: Control Interactions Example
4.1.5.8.2.3 Discovering an HLA Object

When an object update occurs that meets a federates subscription, the RTI invokes the discoverObject()
method on the FederateAmbassador. This method provides the federate with the object ID and the object
class of the discovered object. HelloWorld instantiates an instance of class Country (after ensuring the
object is of class Country). Thisinstance is added to the Country extent (a collection of all elements of a
specific type) when the Country::Country() constructor method is invoked. Figure 4-21: HelowWorld:
Discovering an HLA Object shows the usage for this service.

voi d HwFeder at eAnmbassador::di scover Obj ect(hjectID t he(hj ect,
(hj ect d assHandl e t heChj ect d ass,
Feder ati onTi e t heTi ne,

const User Suppl i edTag t heTag,
Event Ret racti onHandl e t heHandl e)
t hrow (RTI : : Coul dNot O scover,
RTI : : bj ect A assNot Known,
RTl : : I nval i dFeder at i onTi ne,
RTl : : Feder atel nternal Error)

{
cout << "D scovered object " << the(hject << endl;
if (theChjectdass == Country:: GetCountryRild())
{
e e e T T
// Instantiate a local Country object to hold the state of the
/1 renote object we just discovered. This instance will get
// stored in the static extent nenber data - it will be destructed
/1 either when it is renoved or when the application exits.
e e e T T
Country *tnpPtr = new Country(theChject);
}
R e
/1 If not Country type then don't know what to do because all |
/1 know about is Country objects.
e e e T T
}

Figure 4-21: HelloWorld: Discovering an HLA Object
4.1.5.8.2.4 Receiving Object Attribute Updates

After an object is discovered, the RTI will provide a federate with the updates of the discovered object’s
attributes. In this service, the RTI does not provide the type of the abject; therefore, the federate must cache

185

RTI 1.0 Programmer’s Guide

the object (type and D) upon discovery. Figure 4-22: HelloWorld: Receiving Object Attribute Updates
shows the usage of this service.

Note: The RTI encodes the attribute value buffer you provide as a bit stream since it doesn’t know
anything about the types of your data. When the RTI becomes available for additional platforms, this
encoding will need to be supplemented by the federate or by mechanisms provided in future releases of the
RTI. See 2.3.3 Data Marshaling for a more thorough discussion.

voi d HwFeder at eAmbassador::reflect Attri buteVal ues

(hjectID t heQpj ect,
const AttributeHandl eVal uePairSet & theAttri butes,
Feder ati onTi ne t heTi e,
const User Suppl i edTag t heTag,

Event Ret racti onHandl e t heHandl e)

throw (RTI:: (bj ect Not Known,
RTI : : Attri but eNot Known,
RTl : : I nval i dFeder ati onTi ne,
RTl : : Federat el nternal Error)

{
R e
/1 Find the Country instance this update is for. |If we can't find
[/l it then | amgetting data | didn't ask for.
e e T R
Country *pCountry = Country::Find(theChject);
if (pCountry)
{
e e TR
// Set the new attribute values in this country instance.
e e e T T
pCount ry->Update(theAttributes);
}
}

186

RTI 1.0 Programmer’s Guide

void Country::Update(const AttributeHandl evVal uePairSet& theAttributes)

{
RTI:: AttributeHandl e attrHandl e;
unsi gned | ong val ueLengt h;

/1 W need to iterate through the AttributeHandl eVal uePai r Set
/1l to extract each AttributeHandl eVal uePair. Based on the type
/1 specified (the value returned by getHandl e()) we need to
Il extract the data fromthe buffer that is returned by
/'l getVal ue().
for (int i =0; i <theAtributes.size(); i++)
{

attrHandl e = theAttributes.getHandle(i);

if (attrHandl e == Country:: GetPopul ati onRild())

{
// W don't do any encodi ng when we send the data to
/1l the RTI so there is no decoding here. Wen we run
// this over multiple platforns we will have a probl em
// with different endian-ness of platforns. Either we
I/ need to encode the data using sonething |ike XDR or
[/ provide anot her nechani sm
doubl e popul ati on;
theAttributes. getValue(i, (char*)&opulation, valuelLength);
Set Popul ation((doubl e) popul ation);

}

elseif (attrHandle == Country:: GetNaneRtild())

{
/1 Same as above goes here...
char nane[1024];
theAttributes.getValue(i, (char*)name, valueLength);
name[val ueLength] = NULL;
Set Nane((const char*)nane);

}

Figure 4-22: HelloWorld: Receiving Object Attribute Updates
4.1.5.8.2.5 Receiving an Interaction

When an interaction that meets a federates subscription criteria is sent, the RTI will invoke the
receivelnteraction() method on the FederateAmbassador. In the Hello World application, the
HwFederateAmbassador provides the interaction class handle and the set of parameters to the
Country::Update() method. This method checks to ensure the type of interaction is Communication and
then extracts the Message parameter to display. Figure 4-23: HellowWorld: Receiving I nteractions shows the
usage for this service.

voi d HwFeder at eAmbassador::receivelnteraction
(I'nteractiond assHandl e thel nteraction,

const Par anet er Handl eVal uePai r Set & t hePar anet er s,

Feder ati onTi ne t heTi ne,

const User Suppl i edTag t heTag,

Event Ret racti onHandl e t heHandl e)

throw (RTI:: I nteracti ond assNot Known,

RTl : : I nt er act i onPar anet er Not Known,
RTI : : I nval i dFeder at i onTi ne,

187

RTI 1.0 Programmer’s Guide

RTI : : Feder atel nternal Error)

{
[/l Pass the interaction off to the Country cl ass
[/l so that it can be processed.
Country: : Update(thelnteraction, theParaneters);
}

voi d Country::Update(RTlI::Interactiond assHandl e thel nteraction,
const RTI : : Pararet er Handl eVal uePai r Set & t heParaneters)

{
if (thelnteraction == Country::GetConmRild())
{
RTI : : Par anet er Handl e par antHandl e;
unsi gned | ong val uelLengt h;
/1 V& need to iterate through the Attribut eHandl eVal uePai r Set
// to extract each AttributeHandl eVal uePair. Based on the type
/1 specified (the value returned by getHandl e()) we need to
/l extract the data fromthe buffer that is returned by
/1 getVal ue().
for (int i =0; i <theParaneters.size(); i++)
{
parantandl e = theParaneters. getHandle(i);
if (parantHandl e == Country:: Get MessageRtild())
{
/1 W don't do any encoding when we send the data to
/1 the RTI so there is no decoding here. Wen we run
/1l this over multiple platforms we will have a probl em
/1 with different endian-ness of platforns. Ether we
/1 need to encode the data using sonething |ike XDR or
/'l provide another nechani sm
char msg[1024];
theParanet ers. getVal ue(i, (char*)nsg, val ueLength);
nsg[val ueLength] = NULL;
cout << "Interaction: " << nmsg << endl;
}
el se
/1 There nust be an error since there should only be
/1 one parareter to Communi cati on.
cerr << "Error: | seemto have received a parameter for "
<< "interaction class Communi cation that | don't "
<< "know about." << endl;
}
}
}
el se
{
cerr << "Received an interaction class | don't know about." << endl;
}
}

Figure 4-23: HelloWorld: Receiving I nteractions

4.1.5.8.2.6 Removing HLA objects

188

RTI 1.0 Programmer’s Guide

The RTI notifies the federate when an object has either been deleted or no longer meets the federate’s
subscription criteria by invoking the removeObject() method on the FederateAmbassador. The Hello World
application looks up the Country object based on the object ID provided by the RTI. The resulting
Country object isthen deleted. Figure 4-24: Helloworld: Removing HLA Objects shows the usage of this
service.

voi d HwFeder at eAmbassador::remveObj ect(bjectlD t he(hj ect,
(bj ect Renoval Reason t heReason,
Feder at i onTi e t heTi ne,

const User Suppl i edTag t heTag,
Event Retracti onHandl e t heHandl e)
throw (RTI:: (bj ect Not Known,
RTl : : I nval i dFeder ati onTi ne,
RTl : : Federatel nternal Error)

{
R T
/1 Call the other renove(hject method since this should probably
/1 be inplemented using default parameter val ues.
R LT T
t hi s->renove(hj ect (t heChj ect, theReason);
}
voi d HwFeder at eAmbassador::remveObj ect(ojectID t he(hj ect,
(bj ect Renoval Reason t heReason)
throw (RTI:: (bj ect Not Known,
RTI : : I nval i dFeder at i onTi ne,
RTl : : Federatel nternal Error)
{
cout << "Renoved object " << theChject << endl;
Country* pCountry = Country::Find(theChject);
if (pCountry)
{
del ete pCountry;
}
}

Figure 4-24: HelloWorld: Removing HLA Objects
4.1.5.8.2.7 Receiving a Time Advance Grant

The timeAdvanceGrant() method on the FederateAmbassador is invoked by the RTI in reply to a request for
time advancement. The Hello World application stores the time that the RTI has granted in a variable
named grantTime and sets a flag informing the application that the time has changed. Figure 4-25:
HelloWorld: Receiving a Time Advance Grant shows the usage of this service.

voi d HwFeder at eAnbassador: :ti meAdvanceGrant(FederationTi ne theTinme)
throw (RTI:: I nval i dFederationTi ne,
RTI : : Ti meAdvanceVWasNot | nPr ogr ess,
RTI : : Feder ati onTi meAl r eadyPassed,
RTI : : Feder at el nt ernal Error)

grant Ti ne = t heTi ng;
ti meAdv@ ant = RTl:: RTI _TRUE

189

RTI 1.0 Programmer’s Guide

[

Figure 4-25: HelloWorld: Receiving a Time Advance Grant

4.1.5.8.3 Updating state and sending data

The final step to the Hello World event loop is to update the state of the Country object by calculating the
new population based on the deltatime. When a Country object’s member datais modified aflag is set that
records that the attribute has changed. After calculation of the new state, the Country::CreateNvpSet()
method isinvoked to create an AttributeHandleV aluePairSet that contains each of the changed attributes.
The CreateNvpSet() method checks the changed flags as well as the control update flags to make sure that
1.) the data has changed and 2.) that the federation needs the data. If both of these tests pass then the
attribute is included in the AttributeHandleValuePairSet. Figure 4-26: HelloWorld: Updating Country
Objects and Sending Attributes and I nteractions shows the usage of this service.

{

{

RTI :

/!l This is the body of the simulation event |oop

R T LT

/1 If atime advance grant occurred and we have been given

[/ permssion to advance in tine then cal culate ny next state.
e L LT LR E T

if (grantTinme > currentTi me)

{

/] Print state of all countries

Count ry* pCountry(NULL);
for (int i =0; i < Country::ns_extentCardinality; i++)

{
pCountry = Country::ns_countryExtent[i];

if (pCountry)
{

}
}

nyCount ry->Updat e(grantTine);
currentTime = grantTi e;

cout << "Country[" << i << "] " << pCountry << endl;

}
} /1 end while

cAttributeHandl eVal uePairSet* Country:: CreateNVPSet ()
RTI:: Attri but eHandl eVal uePai r Set* pCountryAttributes(NULL);

/1 Make sure the RTI Anbassador is set.
if (ms_rti Anb & hasNameChanged && hasPopul at i onChanged)

// Set up the data structure required to push this

/!l object's state to the RTI.
e

RTI: : Cpbj ect | Dcount nunAttri butes(2);

pCountryAttributes = RTI:: AttributeSetFactory::create(numittributes);

190

RTI 1.0 Programmer’s Guide

if ((hasNaneChanged == RTI::RTI_TRUE) &&
(nms_sendNarreAttrUpdates == RTI:: RTI_TRUE))
{
// W don't do any encodi ng here even though the data
[l is going over the wire. Wen we run this over
// multiple platforns we will have a probl em
/1 with different endian-ness of platforns. Ether we
// need to encode the data using sonething |ike XDR or
[/ provide another mechani sm
pCount ryAttri but es->add(this->CGetNameRi1d(),
(char*) this->Get Nane(),
(strlen(this->CGet Narre()) *si zeof (char)));

if ((hasPopul ati onChanged == RTIl:: RTI_TRUE) &&
(ns_sendPopul ati onAttrUpdates == RTI::RTI_TRUE))

{
// Sane goes here as above. ..
pCount ryAt tri but es->add(this->GetPopul ati onRild(),
(char*) &t hi s->Get Popul ation(),
si zeof (doubl e));
}

}

/1 pCountryAttributes is allocated on the heap and nust be
/1 deallocated by the federate.
return pCountryAttributes;

}
void Country::Update(RTI::FederationTi me& newTime)
{
R e
/1 If atime advance grant occurred and we have been given
/1l permission to advance in tine then cal culate ny next state.
R e T TP T
doubl e del taTi me = newTime - this->CGetLastTine();
if (deltaTime > 0)
{
Set Popul ati on(GetPopul ation() +
(Get Popul ati on() *ns_grow hRat ePer Sec*del t aTi ne));
}
if (ms_rtiAm)
{
R
/1 Update state of country
e
try
{

RTI:: At tri but eHandl eVal uePai r Set * pNvpSet (t hi s->Oreat eNVPSet ()) ;

// Note: if timeAdv@ant is NULL -> SEGV:

ns_rti Anb- >updat eAt t ri but eVal ues(this->Getl nstancel d(),
*pNvpSet,
newli ne, "");

// Mist free the nenory

191

RTI 1.0 Programmer’s Guide

PNvpSet - >enpt y() ;
del ete pNvpSet;

}
catch (RTI::Exception& e)
{
cerr << "Error:" << & << endl;
}

// Periodically send an interaction to tell everyone Hello
static int periodi cMessage = 0;
if ((periodi cMessage++9d00) == 0)

{
RTI : : Par anet er Handl eVal uePai r Set * pParans(NULL);

// Set up the data structure required to push this
// object's state to the RII.

RTI : : ULong nunPar ans(1);
pParans = RITI:: Paramet er Set Factory: : create(nunParans);

char *pMessage = "Hello VWerld!";

pPar ans- >add(thi s->CGet MessageRti I d(),
(char*) pMessage,
(strlen(pMessage) *si zeof (char)));
try
{

}
catch (RTI::Exception& e)

{
}

/1 Need to free menory
pPar ans- >enpt y() ;
del et e pParans;

ns_rti Anb->sendl nteraction(Get CormRild(), *pParans, newTineg,

cerr << "Error:" << & << endl;

}

[/l Set last tine to newtine
m | ast Ti me = newTi ne;

}

")

Figure 4-26: HelloWorld: Updating Country Objects and Sending Attributes and

Interactions

4.2 Jager: Another Game Exploiting the RTI (JAGER)

JAGER is a space combat game developed to demonstrate the usage of the 1.0 RTI in a more advance
application. An HTML document describing the game and a tutorial on how it uses the RTI can be found

in $RTI_HOME/demo/Jager/doc/tutorial .html.

192

RTI 1.0 Programmer’s Guide

5. Troubleshooting

Having troubles? Please read the following problems and resolutions.

1. Problem: Federate can not connect to rtiexec.

> hellowrld US 100 10

RTI execProxy: :start: Can't connect to RTlexec: Connection refused
Error:RTI::RTlinternal Error : RTlexecProxy::start: Can't connect to
RTl exec: Connection refused 11000

Resolution: Several configuration errors can cause this problem; the dependencies include
- RTI_CONFIG environment variable,
RTI_EXEC_HOST valuein $RTI_CONFIG/RTI.rid,
RTI_EXEC_PORT valuein $RTI_CONFIG/RTI.rid, and
proper execution of rtiexec process: rtiexec <port number>.

Either the rtiexec is not running, the rtiexec is running on the wrong port, the rtiexec is running on the
wrong host, the rtiexec is running on an unreachable host, RTI_EXEC HOST isimproperly set, or
RTI_EXEC_PORT isimproperly set.

Check to make sure that 1) the host name and port number are correctly specified in the
$RTI_CONFIG/RTL.rid file, 2) the rtiexec process was executed on the host and port specified, and 3)
the host isreachable (pi ng <host nanme>).

2. Problem: RTI_HOME environment variable is not set. The federate that successfully registersthe
federation execution with the rtiexec will attempt to fork the $RTI_HOME/bin/fedex.sh process. This
attempt will fail if the variableis not set or isimproperly set.

> helloWwrld US 100 10

Error: RTI::RTlinternal Error

RTI anbassador : : cr eat eFeder ati onExecuti on: RTI _HOVE not set 13148
Error: Hell owrld Federation Execution does not exists.

RTI : : Feder ati onExecuti onDoesNot Exi st : RTI execl npl : : get FedExByNane:
not reserved 12104

Resolution: Set the RTI_HOME environment variable to the directory specified during installation
with “/rti” appended to the end.

>setenv RTI_HOVE $I NSTALL_DIR/rti

3. Problem:RTI_HOME environment variable isincorrectly set. The federate that successfully registers
the federation execution with the rtiexec will attempt to fork the $RTI_HOME/bin/fedex.sh process.
This attempt will fail if the variable isincorrectly set.

> helloWwrld US 100 10

Error: RTIl:: RTlinternal Error

RTI anbassador : : cr eat eFeder ati onExecution: exec failed: No such file
or directory 13151

Error: HelloWwrld Federati on Executi on does not exists.

193

RTI 1.0 Programmer’s Guide

RTI : : Feder at i onExecut i onDoesNot Exi st
not registered 12105

Error:
RTI : : Feder at i onExecut i onDoesNot Exi st

RTI execl npl : : get FedExByNane:

Hel | oWwrl d Federati on Executi on does not exists.

RTI execl npl : : get FedExByNane:

not registered 12105

Resolution: Set the RTI_HOME environment variable to the directory specified during installation
with “/rti” appended to the end.

>setenv RTI_HOVE $I NSTALL_DI R/ rti

4. Problem:RTI_CONFIG environment variable is not set. The federate needs to read in the RTI.rid and
<FederationName>.fed files that are located in the RTI_CONFIG directory.

> hellowrld US 100 10

RTI _CONFI G envi ronment vari able not set!!!
Error: RTI:: RTlinternal Error RTI _CONFI G envi ronment vari abl e not set
0

Resolution: Set the RTI_CONFIG environment variable to the directory specified during installation
with “/rti/config” appended to the end.

>setenv RTI _HOVE $I NSTALL_DIR/rti/config

5. Problem:RTI>rid file can not be found. RTI_CONFIG environment variable isincorrectly set. The
federate needs to read in the RTI.rid and <FederationName>.fed files that are located in the
RTI_CONFIG directory.

> helloWworld US 100 10
/honme/wrong dir/RTI.rid: Config file not found
Error: RTl::RTlinternal Error Config file not found O

Resolution: Set the RTI_CONFIG environment variable to the directory specified during installation
with “/rti/config” appended to the end.

>setenv RTI_HOVE $INSTALL_DIR/rti/config

6. Problem:Error in syntax of MOM portion of the FED file. This generally occurs when an nameis
misspelled or not specified in thefile.

> helloWwrld US 100 10

Error: RTIl:: RTlinternal Error Error in MOM section of the FED file.
Check Syntax of the predefined MOM cl ass. 8001

hel |l oWwrl d: Federate Handl e = 13340
Error: RTI : : Feder at eNot Execut i onMenber
13156

Error: RTI : : Feder at eNot Execut i onMenber
13156

Federate not executi on nenber

Federate not executi on nenber

194

RTI 1.0 Programmer’s Guide

Resolution: Compare the fed_example.fed filethat islocated in SINSTALL_DIR/rti/config against the
FED file causing the exception. New releases of the RTI may add MOM classes and
attributes/parameters to the MOM portion of the FED (class Manager).

Problem:Error in syntax of Federate portion of the FED file. This generally occurs when an nameis
misspelled or not specified in thefile.

> helloWrld US 100 10

hell oWwrl d: Federate Handle = 1

ERR RTI f edExMsgHandl er::close: failed to renmove handl er
Error: RTI:: NaneNot Found : Invalid Attribute Nane 5028

Resolution: Locate the misspelled or missing name in the FED file and fix it.

195

